首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorophyll and nitrogen contents were highest in leaves of middle position, similarly as photosynthetic efficiency represented by 14C fixation (maxima in leaf 5 from the top). All the leaves lost 14C after 2 weeks of 14CO2 exposure. However, the reduction in radioactivity was less in young upper leaves than in the mature lower leaves. Leaves exported 14C-photosynthates to stem both above and below the exposed leaf. Very little radioactivity was recovered from the seeds of plants in which only first or second leaves were exposed to 14CO2 implying thereby that the carbon contribution of first two leaves to seed filling was negligible. The contribution of leaves to seed filling increased with the leaf position up to the sixth leaf from the top and after the seventh leaf their contribution to seed filling declined gradually.  相似文献   

2.
The influence of nitrogen deprivation on leaf development and the biomechanics of leaf growth were studied using maize (Zea mays L.) seedlings grown under low irradiance. Although the nitrogen deprivation had no significant effect on photosynthesis, the leaf length, the leaf area, and the total assimilation area of plants decreased. The mature size of the epidermal cells was not altered, while the cells of nitrogen-deprived plants reached their final length closer to the leaf base than the epidermal cells of control plants. Decreases in the length of the growing zone (from 50 to 30 mm) and in the maximum value of relative elemental growth rate (from 0.08 to 0.06 mm mm–1 h–1) were observed in the nitrogen deprived plants. The maximal value of growth velocity in the control treatment was higher along the elongation zone, except for the basal 20 mm, where there was no significant difference between the control and the N-deprived plants. The net deposition rates of water and dry matter were also affected by nitrogen deprivation: the values of these features decreased and the spatial position of the maximum of the deposition rates shifted towards the leaf base.  相似文献   

3.
为减轻出口人参榕贮运暗胁迫下叶片的黄化与脱落,以人参榕(接穗为泰国榕)为材料,采用28 W荧光灯补充光照,研究不同补光时长(0~12h·d-1)处理28d后对模拟贮运人参榕生长和光合作用的影响,以探索人参榕贮运期间适宜的补光时长。结果显示:(1)模拟暗贮运28d时,补光0h·d-1处理的人参榕落叶率、黄化指数分别为89.64%、0.52,而补光8~12h·d-1处理的落叶率、黄化指数显著下降,落叶率比对照(0h·d-1)分别显著下降为35.7%、39.19%、26.08%,黄化指数分别显著下降为0.25、0.28、0.19。(2)随着补光时间的延长,人参榕叶片的相对含水量(RWC)显著降低,而比叶重(SLW)显著升高;其叶绿素a、叶绿素b、叶绿素(a+b)含量、类胡萝卜素含量、叶绿素a/b、净光合速率(Pn)、气孔导度(Gs)均呈上升趋势,且在补光8~12h·d-1处理下各指标均明显高于其他处理,但胞间二氧化碳浓度(Ci)呈下降趋势。(3)相关分析显示,模拟贮运人参榕的落叶率与黄化指数呈极显著正相关;落叶率、黄化指数均与其叶绿素含量、Pn呈极显著负相关,与Ci呈极显著正相关;且叶片Pn与叶绿素含量、Gs呈显著正相关,与Ci呈极显著负相关。研究表明,通过补光措施可显著减缓贮运人参榕叶片的黄化与脱落,28 W荧光灯光照8~12h·d-1的补光效果均较好,综合考虑成本认为在实际人参榕贮运过程中最适补光时长为8h·d-1;贮运时较长时间的暗胁迫环境对人参榕叶片光合系统造成损伤并导致Pn下降,其主要是叶绿素含量降低的非气孔限制因素所致。  相似文献   

4.
Carbon translocation was affected by shade in different tropical tree species differing in successional status and degree of shade tolerance. Plants of the early-successional shade-intolerant species Cecropia pachystachya and Schizolobium parahyba and of the late-successional shade-tolerant species Myroxylon peruiferum and Hymenaea courbaril were grown under full sun (FS) and natural shade treatments (NS) and assessed for [14C]-sucrose translocation. Most of the 14C was retained in the fed leaf after a 24 h translocation period. Under FS, the growing apical part of the plant was the most intense sink for most species. Shade affected growth and sink intensity differently in early and late successional species. Growth was more markedly affected in the early species. Whereas these continued to invest carbon into the growing apical part of the plant under shade conditions, the late successional species invested relatively more into other sinks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Huang  Z.-A.  Jiang  D.-A.  Yang  Y.  Sun  J.-W.  Jin  S.-H. 《Photosynthetica》2004,42(3):357-364
Gas exchange, chlorophyll (Chl) fluorescence, and contents of photosynthetic pigments, soluble proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO), and antioxidant enzymes were characterized in the fully expanded 6th leaves in rice seedlings grown on either complete (CK) or on nitrogen-deficient nutrient (N-deficiency) solutions during a 20-chase period. Compared with the control plants, the lower photosynthetic capacity at saturation irradiance (P max) was accompanied by an increase in intercellular CO2 concentration (Ci), indicating that in N-deficient plants the decline in P max was not due to stomatal limitation but due to the reduced carboxylation efficiency. The fluorescence parameters PS2, Fv/Fm, electron transport rate (ETR), and qP showed the same tendency as P max in N-deficient plants. Correspondingly, a higher qN paralleled the rise of the ratio of carotenoid (Car) to Chl contents. However, Fv/Fm was still diminished, suggesting that photoinhibition did occur in the photosystem 2 (PS2) reaction centres. In addition, the activities of antioxidant enzymes on a fresh mass basis were gradually lowered, leading to the aggravation of membrane lipid peroxidation with the proceeding N-deficiency. The accumulation of malonyldialdehyde resulted in the lessening of Chl and soluble protein content. Analyses of regression showed PS2 excitation pressure (1 - qP) was linearly correlated with the content of Chl and inversely with soluble protein (particularly RuBPCO) content. There was a lag phase in the increase of PS2 excitation pressure compared to the decrease of RuBPCO content. Therefore, the increased excitation pressure under N-deficiency is probably the result of saturation of the electron transport chain due to the limitation of the use of reductants by the Calvin cycle. Rice plants responded to N-deficiency and high irradiance by decreasing light-harvesting capacity and by increasing thermal dissipation of absorbed energy.  相似文献   

6.
放牧时,动物采食及其排泄物会影响植物的生长,但动物彩食及其排泄物的空间异质性可能会影响这咱效应.在位于我国北方典型农牧交错区的内蒙古多伦县,我们研究了模拟入牧斑块和施氧肥对植物生长的影响,实验采用模拟放牧采食斑块(观割半径分别0、10、20、40和8cm)和土壤施氮(分别为0、5、20Gn\m2)两种处理,植物地上部收获后分为绿体和立柯两部分,并分析其含氮量.结果表明,刈割降低了植物的生物量(40.5%),而施氮可增加生物量(57.8%)刈割交通规则植物生长的抑制作用在面积最水又施肥的斑块上表现更明显.土壤施氮可以促进杜物生长并且影响刈割效应.同时植物的绿-枯比阻碍施氮水平的增回而增回,因此氮会延迟植物的衰老.以上结果表明,刈割(模拟动物采食)斑块的大小会影响草原植物的生长,土壤施氮(模拟动物尿氮)可以提高草原生态系统的初级生产力,并影响刈割效应.  相似文献   

7.
放牧时,动物采食及其排泄物会影响植物的生长,但动物采食及其排泄物的空间异质性可能会影响这种效应。在位于我国北方典型农牧交错区的内蒙古多伦县,我们研究了模拟放牧斑块和施氮肥对植物生长的影响,实验采用模拟放牧采食斑块(刈割半径分别为0、10、20、40和80 cm)和土壤施氮(分别为0、5、10、20 g N/m2)两种处理,植物地上部收获后分为绿体和立枯两部分,并分析其含氮量。结果表明,刈割降低了植物的生物量(41.5%),而施氮可增加生物量(57.8%)。刈割对植物生长的抑制作用在面积最小又施肥的斑块上表现更明显。土壤施氮可以促进植物生长并且影响刈割效应。同时植物的绿-枯比随施氮水平的增加而增加,因此氮会延迟植物的衰老。以上结果表明,刈割(模拟动物采食)斑块的大小会影响草原植物的生长,土壤施氮(模拟动物尿氮)可以提高草原生态系统的初级生产力,并且影响刈割效应。  相似文献   

8.
Changes in growth parameters and 14CO2 and [U-14C]-sucrose incorporation into the primary metabolic pools and essential oil were investigated in leaves and stems of M. spicata treated with etherel and gibberellic acid (GA). Compared to the control, GA and etherel treatments induced significant phenotypic changes and a decrease in chlorophyll content, CO2 exchange rate, and stomatal conductance. Treatment with etherel led to increased total incorporation of 14CO2 into the leaves wheras total incorporation from 14C sucrose was decreased. When 14CO2 was fed, the incorporation into the ethanol soluble fraction, sugars, organic acids, and essential oil was significantly higher in etherel treated leaves than in the control. However, [U-14C]-sucrose feeding led to decreased label incorporation in the ethanol-soluble fraction, sugars, organic acids, and essential oils compared to the control. When 14CO2 was fed to GA treated leaves, label incorporation in ethanol-insoluble fraction, sugars, and oils was significantly higher than in the control. In contrast, when [U-14C]-sucrose was fed the incorporation in the ethanol soluble fraction, sugars, organic acids, and oil was significantly lower than in the control. Hence the hormone treatment induces a differential utilization of precursors for oil biosynthesis and accumulation and differences in partitioning of label between leaf and stem. Etherel and GA influence the partitioning of primary photosynthetic metabolites and thus modify plant growth and essential oil accumulation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Abstract: Plants vary widely in their relative growth rate (RGR), be it dependent on environmental conditions or due to their genetic background. In a comparison of the RGR of grasses growing under different environmental conditions, variation in RGR tends to correlate with that in the leaf elongation rate (LER). When different species or genotypes thereof are compared under identical growing conditions, variation in LER may or may not correlate with that in RGR, depending on the comparison. However, since RGR is described by an exponential equation, whereas LER is mainly a linear process, we conclude that any correlation between RGR and LER must be fortuitous. That is, exponential growth must be due to increases with time in plant traits such as 1) leaf dry mass per unit leaf length invested per unit time, and/or 2), i.e., the total LER of all the growing leaves at one point in time. The latter can be achieved as follows: 1) each subsequent leaf has a higher LER than the preceding one; 2) leaves appear at an increasing rate; 3) the duration of the process of leaf elongation increases for subsequent leaves. In this review, we only explore possible factors that account for changes in with time, in different genotypes and under different environmental conditions. Inherent variation in LER of individual leaves and variation due to environmental factors may reflect variation in the rate of cell division and/or in cell elongation.  相似文献   

10.
Hordeum spontaneum shows a large genetic variation and occupies a wide range of different habitats. The aim of this study was to quantify variation in growth characteristics of H. spontaneum from different sites in Israel and to relate this variation to different environmental conditions. To this end, 84 accessions of 21 populations were grown in a growth chamber in near-optimal conditions and a range of physiological, morphological, allocation- related and chemical characteristics were measured. These parameters included rates of photosynthesis, shoot and root respiration, specific leaf area, biomass allocation and seed mass. Averaged over all traits variation explained by differences between populations was 26%, between accessions 21%, whereas that within accessions was 53%. By contrast with most genetic studies, we found variation between populations larger than between accessions. The largest between-population variation (46%) was for morphological traits. In particular, seed mass, leaf thickness and leaf width differed strongly between populations. Variation in growth characteristics between populations was poorly related to mean annual rainfall, mean humidity or January temperature at the sites of origin. We expect that differences between populations to be larger and correlation with environmental parameters stronger in plants grown in stressful conditions. According to our study, seed mass is more important than relative growth rate in determining variation in early plant biomass in H. spontaneum .  相似文献   

11.
Zhao  Duli  Oosterhuis  D.M. 《Photosynthetica》1999,36(1-2):279-290
During ontogeny of Gossypium hirsutum L. floral buds (squares), increases in area and dry mass (DM) of floral bracts and the subtending sympodial leaf followed a sigmoid growth curve with increasing square age. The maximum growth rates of the bract area and bract DM occurred between 15 and 20 d after square first appearance (3 mm in diameter). Net photosynthetic rate (PN) of the sympodial leaf at first fruiting branch position of main-stem node 10 reached a maximum when the subtended square developed into a white flower. Floral bracts had much lower PN and higher dark respiration than the subtending leaf. The amount of 14CO2 fixation by the bracts of a 20-d-old square was only 22 % of the subtending leaf, but 56 % of 14C-assimilate in the floral bud was accumulated from the bracts, 27 % from the subtending leaf, and only 17 % from the main-stem leaf at 6 h after 14C feeding these source s. Hence floral bracts play an important role in the carbon supply of developing cotton squares. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
We examined the effect of growth temperature on the underlying components of growth in a range of inherently fast‐ and slow‐growing plant species. Plants were grown hydroponically at constant 18, 23 and 28 °C. Growth analysis was conducted on 16 contrasting plant species, with whole plant gas exchange being performed on six of the 16 species. Inter‐specific variations in specific leaf area (SLA) were important in determining variations in relative growth rate (RGR) amongst the species at 23 and 28 °C but were not related to variations in RGR at 18 °C. When grown at 18 °C, net assimilation rate (NAR) became more important than SLA for explaining variations in RGR. Variations in whole shoot photosynthesis and carbon concentration could not explain the importance of NAR in determining RGR at the lower temperatures. Rather, variations in the degree to which whole plant respiration per unit leaf area acclimated to the different growth temperatures were responsible. Plants grown at 28 °C used a greater proportion of their daily fixed carbon in respiration than did the 18 and 23 °C‐grown plants. It is concluded that the relative importance of the underlying components of growth are influenced by growth temperature, and the degree of acclimation of respiration is of central importance to the greater role played by NAR in determining variations in RGR at declining growth temperatures.  相似文献   

13.
Short-term studies for comparing some primary metabolic and growth-responses to salt stress in seedlings of two maize genotypes differing in drought resistance were carried out under controlled conditions. Both genotypes revealed high yielding ability in favourable environments. Treatments: Control (Hoagland-Arnon No 1 solution) and salt stress (Hoagland-Arnon solution plus NaCl, s = –0.84MPa). It was found that in both genotypes the activity of the principal metabolic pathway supplying reduced nitrogen (15N) for the synthesis of amino acids and proteins as well as the assimulatory number (14CO2—assimilation relation rate per chlorophyll unit) were decreased under the effect of the stress. These effects were more marked in the resistant genotype. In this genotype the stress induced metabolic activity decline was accompanied by a corresonding reduction of the relative growth rate. Conversely, continuing growth, resulting probably from accumulation of solutes, was observed in the susceptible genotype.On the basis of these and other observations it is assumed that the resistant genotype manifests short-term energy saving stress reactions.  相似文献   

14.
Supplementary UV-B (12.2 kJ m−2 d−1 UV-BBE) provided to Vigna radiata for 2 h d−1 suppressed the length of root, shoot and whole plants, number of leaves, total leaf area, leaf area index, specific leaf mass, fresh and dry mass of leaves and shoot, relative growth rate and net productivity. In unstressed green gram plants (10 kJ m−2 d−1 UV-BBE), triadimefon (TRIAD) (20 mg dm−3) enhanced growth in all parameters over control. The growth promoting effect of TRIAD enabled the UV-B impacted plants to overcome the growth inhibitions to varying degrees indicating its protective potential against UV-B stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The effect of temperature regime on growth and other morphological characteristics of barley plants (Hordeum distichum L., cv. Andrei) as dependent on the level of mineral nutrition was investigated in a controlled experiment. Plants were raised hydroponically at a high (0.22 g/(g day)) and low (0.05 g/(g day)) relative rates of the addition of mineral nutrients (R A). Mineral nutrients were daily added to the nutrient solutions in exponentially increased amounts to provide steady-state plant growth. At the optimum temperature regime (21/17°C, day/night), the plant relative growth rate (RGR) was proportional to the preset R A during the entire exponential period. Low R A led to a decrease in the nitrogen content in plants, plant weight, and respiratory activity, as well as to the increase in the relative root weight. Biomass accumulation at lowered temperature regime (13/8°C) and a high R A was 1.8-fold lower than at optimum temperature regime. Although under these conditions, the ratio of respiration to gross photosynthesis reduced threefold due to the decrease in the respiration rate, RGR of plants was equal to 0.11 ± 0.02 g/(g day), which was twice lower than the preset R A. These pointed to the decrease in plant ability to maintain a certain ratio of photosynthesis to respiration within a day. At a deficiency of mineral nutrition and low temperature, RGR reached the preset R A. Plants adapted to lowered temperature by a shift of the temperature optimum of their metabolism (heat production) to lower values. As a whole, a low variability of such growth parameters as RGR, C/N, and root to shoot weight ratio at different R A and lowered temperatures testified to the lessening of growth limitation by the mineral nutrition.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 384–391.Original Russian Text Copyright © 2005 by Garmash.  相似文献   

16.
刈割、施肥和浇水对垂穗披碱草补偿生长的影响   总被引:1,自引:1,他引:1  
植物的补偿生长特性受放牧强度和生境资源获得性的影响。通过为期2年的野外控制实验,研究了刈割高度(留茬1cm、3cm及不刈割)、施肥(施、不施)和浇水(浇、不浇)处理对垂穗披碱草(Elymus natans)补偿生长的影响,并结合对各处理分株密度、比叶面积、净光合速率和相对生长率的变化研究,探讨了其补偿生长机制。结果表明:刈割后垂穗披碱草分株种群密度显著增加,补偿生长高度显著降低,比叶面积和相对生长率随刈割强度增加而呈上升趋势,叶片净光合速率变化不显著;施肥能显著增加垂穗披碱草的补偿生长高度、比叶面积、叶片净光合速率和相对生长率;浇水处理以及刈割、浇水、施肥处理之间的交互作用均不显著。可见,在刈割条件下,垂穗披碱草具有一定的密度补偿机制,但由于刈割抑制补偿性高生长,导致分株高度出现低补偿。因此,即使刈割后比叶面积和株高相对生长率显著增加,也不一定必然引起株高的超补偿;但施肥可显著提高垂穗披碱草的补偿能力,增加耐牧性,证实了改进后的限制资源模型的预测。  相似文献   

17.
Three soybean ( Glycine max L. Merr.) cultivars (Maple Glen, Clark and CNS) were exposed to three CO2 concentrations (370, 555 and 740 μmol mol−1) and three growth temperatures (20/15°, 25/20° and 31/26°C, day/night) to determine intraspecific differences in single leaf/whole plant photosynthesis, growth and partitioning, phenology and final biomass. Based on known carboxylation kinetics, a synergistic effect between temperature and CO2 on growth and photosynthesis was predicted since elevated CO2 increases photosynthesis by reducing photorespiration and photorespiration increases with temperature. Increasing CO2 concentrations resulted in a stimulation of single leaf photosynthesis for 40–60 days after emergence (DAE) at 20/15°C in all cultivars and for Maple Glen and CNS at all temperatures. For Clark, however, the onset of flowering at warmer temperatures coincided with the loss of stimulation in single leaf photosynthesis at elevated CO2 concentrations. Despite the season-long stimulation of single leaf photosynthesis, elevated CO2 concentrations did not increase whole plant photosynthesis except at the highest growth temperature in Maple Glen and CNS, and there was no synergistic effect on final biomass. Instead, the stimulatory effect of CO2 on growth was delayed by higher temperatures. Data from this experiment suggest that: (1) intraspecific variation could be used to select for optimum soybean cultivars with future climate change; and (2) the relationship between temperature and CO2 concentration may be expressed differently at the leaf and whole plant levels and may not solely reflect known changes in carboxylation kinetics.  相似文献   

18.
Effect of Water Stress on Photosynthesis and Growth in Two Teak Phenotypes   总被引:2,自引:0,他引:2  
Two teak (Tectona grandis L.f.) phenotypes differing in their leaf length/breadth ratios were subjected to water stress by withholding water supply for three weeks. Growth rates of whole plants, developing leaves (1st and 2nd from shoot apices), and 2nd and 3rd internodes were higher in broad leaved (BL) phenotype than in narrow leaved (NL) phenotype before and after imposing water stress treatment. However, the effect of water stress on these parameters was higher in the BL phenotype than in the NL one. Diurnal course of net photosynthetic rate (P N) of 3rd or 4th leaves from shoot apices measured under well-watered conditions was higher for the NL than BL phenotype. P N, stomatal conductance (g s), and transpiration rate (E) in both phenotypes were negatively affected by water stress and their decline under water stress was significantly higher in the BL than NL plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
As competition for the limited water supply available for irrigation of horticultural crops increases, research into crop management practices that enhance drought resistance, plant water-use efficiency and plant growth when water supply is limited has become increasingly essential. This experiment was conducted to determine the effect of potassium (K) nutritional status on the drought resistance of Hibiscus rosa-sinensis L. cv. Leprechaun (Hibiscus). All the treatments were fertilized with Hoagland's nutrient solution, modified to supply K as K2SO4, at 0 mM K (K0), 2.5 mM K (K2.5), and 10 mM K (K10), under two irrigation regimes (drought stressed [DS] and non-drought stressed [non-DS]). Regular irrigation and fertigation were adopted for 54 days, and drought stress treatment (initiated on day 55) lasted for 21 days; while non-DS control plants continued to receive regular irrigation and fertigation. Following the 21-day drought stress period, plants were labeled with 86Rb+ to determine the percentage of post-drought stress live roots. Both K deficiency (K0) and drought stress reduced shoot growth, but drought stress increased root growth and thus the root:shoot ratio. At K0, plants were K-deficient and had the lowest leaf K, Fe, Mn, Zn, Cu, B, Mo and Al, and highest Ca concentrations. Although the percentage of live roots was decreased by drought stress, K2.5 and K10 plants (with similar percent live roots) had greater root survival ratio after drought treatment than the K-deficient plants. These observations indicate that adequate K nutrition can improve drought resistance and root longevity in Hibiscus rosa-sinensis.  相似文献   

20.
Short-term 14C-fixation (4 h) Selenastrum capricornutum algal toxicity tests were conducted with Cd (n=8), Zn (n=9) and suspended sediment aqueous elutriates (n=28) and the results were compared to those obtained in a 48 h population growth test. In order to provide more realistic experimental conditions, toxicity tests were carried out in prefiltered nutrient-spiked Lake Geneva water. The population growth inhibition test was significantly more sensitive than the14 C-fixation test for Cd (median EC50-4h and EC50-48h values of 600 and 118 μg L-1, respectively) whereas no significant difference was measured for Zn toxicity (median EC50-4h and EC50-48h values of 97 and 96 μg L-1, respectively). With suspended sediment aqueous elutriates, the relative sensitivity of the two different end points is sample dependent, with ratios of the EC25 for the14 C-fixation: population growth test ranging from <0.26 to >53.3. Elutriate toxicity shows no apparent relationship between the acute and chronic test, indicating that population growth inhibition cannot be derived directly or predicted from14 C-fixation. Both tests with their specific advantages and limitations provide valuable complementary information to measure the impact of single toxicants or complex mixtures on aquatic plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号