首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Liposomes containing phospholipids with covalently attached poly(ethylene glycol) (PEG-lipids) are being developed for in vivo drug delivery. In this paper we determine the structure and phase behavior of fully hydrated distearoylphosphatidylcholine (DSPC) suspensions containing PEG-lipids composed of distearoylphosphatidylethanolamine with attached PEGs of molecular weights ranging from 350 to 5000. For DSPC:PEG-lipid suspensions containing 0-60 mol % PEG-lipid, differential scanning calorimetry shows main endothermic transitions ranging from 55 to 64 degrees C, depending on the size of the PEG and concentration of PEG-lipid. The enthalpy of this main transition remains constant for all PEG-350 concentrations but decreases with increasing amounts of PEG-750, PEG-2000, or PEG-5000, ultimately disappearing at PEG-lipid concentrations greater than about 60 mol %. Low-angle and wide-angle x-ray diffraction show that tilted gel (L beta') phase bilayers are formed for all PEG-lipid molecular weights at concentrations of about 10 mol % or less, with the distance between bilayers depending on PEG molecular weight and PEG-lipid concentration. At PEG-lipid concentrations greater than 10 mol %, the lipid structure depends on the size of the PEG moiety. X-ray diffraction analysis shows that untilted interdigitated (L beta I) gel phase bilayers form with the incorporation of 40-100 mol % PEG-350 or 20-70 mol % PEG-750, and untilted gel (L beta) phase bilayers are formed in the presence of about 20-60 mol % PEG-2000 and PEG-5000. Light microscopy, turbidity measurements, x-ray diffraction, and 1H-NMR indicate that a pure micellar phase forms in the presence of greater than about 60% PEG-750, PEG-2000, or PEG-5000.  相似文献   

2.
Hydration of polyethylene glycol-grafted liposomes.   总被引:2,自引:0,他引:2       下载免费PDF全文
This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase of the samples decrease. This reflects the increase in hydration of the lipid headgroup region (up to five additional water molecules per lipid molecule for 12 mol % PEG-lipid) and the weakening of the bilayer packing due to the lateral repulsion of PEG chains.  相似文献   

3.
Densely packed domains of membrane proteins are important structures in cellular processes that involve ligand-receptor binding, receptor-mediated adhesion, and macromolecule aggregation. We have used the biotin-avidin interaction at lipid vesicle surfaces to mimic these processes, including the influence of a surface grafted polymer, polyethyleneglycol (PEG). Single vesicles were manipulated by micropipette in solutions of fluorescently labeled avidin to measure the rate and give an estimate of the amount of avidin binding to a biotinylated vesicle as a function of surface biotin concentration and surface-grafted PEG as PEG-lipid. The rate of avidin adsorption was found to be four times less with 2 mol% PEG750 than for the unmodified surface, and 10 mol% PEG completely inhibited binding of avidin to biotin for a 2-min incubation. Using two micropipettes, an avidin-coated vesicle was presented to a biotinylated vesicle. In this vesicle-vesicle adhesion test, the accumulation of avidin in the contact zone was observed, again by using fluorescent avidin. More importantly, by controlling the vesicle membrane tension, this adhesion test provided a direct measure of the spreading pressure of the biotin-avidin-biotin cross-bridges confined in the contact zone. Assuming ideality, this spreading pressure gives the concentration of avidin cross-bridges in the contact zone. The rate of cross-bridge accumulation was consistent with the diffusion of the lipid-linked "receptors" into the contact zone. Once adherent, the membranes failed in tension before they could be peeled apart. PEG750 did not influence the mechanical equilibrium because it was not compressed in the contact zone, but it did perform an important function by eliminating all nonspecific adhesion. This vesicle-vesicle adhesion experiment, with a lower tension limit of 0.01 dyn/cm, now provides a new and useful method with which to measure the spreading pressures and therefore colligative properties of a range of membrane-bound macromolecules.  相似文献   

4.
The interactive properties of liposomes containing phospholipids with covalently attached poly(ethylene glycol) (PEG-lipids) are of interest because such liposomes are being developed as drug delivery vehicles and also are ideal model systems for measuring the properties of surface-grafted polymers. For bilayers containing PEG-lipids with PEG molecular weights of 350, 750, 2000, and 5000, pressure-distance relations have been measured by X-ray diffraction analysis of liposomes subjected to known applied osmotic pressures. The distance between apposing bilayers decreased monotonically with increasing applied pressure for each concentration of a given PEG-lipid. Although for bilayers containing PEG-350 and PEG-750 the contribution of electrostatic repulsion to interbilayer interactions was significant, for bilayers containing PEG-2000 and PEG-5000 the major repulsive pressure between bilayers was a steric pressure due to the attached PEG. The range and magnitude of this steric pressure increased both with increasing PEG-lipid concentration and PEG size, and the extension length of the PEG from the bilayer surface at maximum PEG-lipid concentration depended strongly on the size of the PEG, being less than 35 A for PEG-750, and about 65 A for PEG-2000 and 115 A for PEG-5000. The measured pressure-distance relations have been modeled in terms of current theories (deGennes, 1987; Milner et al., 1988b) for the steric pressure produced by surface-grafted polymers, as modified by us to take into account the effects of polymer polydispersity and the possibility that, at low grafting densities, polymers from apposing bilayers surfaces can interpenetrate or interdigitate. No one theoretical scheme is sufficient to account for all the experimental results. However, for a given pressure regime, PEG-lipid size, and PEG-lipid surface density, the appropriately modified theoretical treatment gives a reasonable fit to the pressure-distance data.  相似文献   

5.
The apparent area expansion modulus and tensile strength of egg phosphatidylcholine (EPC) membranes are measured in the presence of monooleoylphosphatidylcholine (MOPC). The apparent area expansion modulus decreases from 171 mN m-1 for pure EPC membrane to 82 mN m-1 for a membrane containing 30 mol % MOPC. This significant decrease of the apparent area expansion modulus is attributed to the change of the membrane area due to the tension-dependent exchange of MOPC between the bathing solution and the membrane. Similar to the apparent area expansion modulus, the tensile strength of the membrane decreases with the increase of the molar concentration of MOPC in the membrane. The tensile strength of pure EPC membrane is 9.4 mN m-1 whereas that for a membrane containing 30 mol % MOPC is only 1.8 mN m-1, and for a membrane containing 50 mol % MOPC it is even smaller, on the order of 0.07 mN m-1. The decrease of the tensile strength is coupled with a decrease of the work for membrane breakdown, which changes from 4.3 x 10(-2) kT for pure EPC membrane to 2 x 10(-6) kT for a membrane with 50 mol % MOPC. Overall, these results show that the decrease of the apparent area expansion modulus in the presence of exchangeable molecules is a fundamental property for all membranes and depends on the area occupied by these molecules. The method presented here provides a unique tool for measuring the area occupied by an exchangeable molecule in the bilayer membrane.  相似文献   

6.
Cryo-transmission electron microscopy has been used to investigate the phase behavior and aggregate structure in dilute aqueous mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-phospholipids (PEG-lipids). It is shown that PEG-lipids (micelle-forming lipids) induce a lamellar phase in mixtures with DOPE (inverted hexagonal forming lipid). The amount of PEG-lipid that is needed to induce a pure dispersed lamellar phase, at physiological conditions, depends on the size of the PEG headgroup. In the transition region between the inverted hexagonal phase and the lamellar phase, particles with dense inner textures are formed. It is proposed that these aggregates constitute dispersed cubic phase particles. Above bilayer saturating concentration of PEG-lipid, small disks and spherical micelles are formed. The stability of DOPE/PEG-lipid liposomes, prepared at high pH, against a rapid drop of the pH was also investigated. It is shown that the density of PEG-lipid in the membrane, sufficient to prevent liposome aggregation and subsequent phase transition, depends on the size of the PEG headgroup. Below a certain density of PEG-lipid, aggregation and phase transition occurs, but the processes involved proceed relatively slow, over the time scale of weeks. This allows detailed studies of the aggregate structure during membrane fusion.  相似文献   

7.
Poly(ethylene glycol) (PEG) decorated lipid bilayers are widely used in biomembrane and pharmaceutical research. The success of PEG-lipid stabilized liposomes in drug delivery is one of the key factors for the interest in these polymer/lipid systems. From a more fundamental point of view, it is essential to understand the effect of the surface grafted polymers on the physical-chemical properties of the lipid bilayer. Herein we have used cryo-transmission electron microscopy and dynamic light scattering to characterize the aggregate structure and phase behavior of mixtures of PEG-lipids and distearoylphosphatidylcholine or dipalmitoylphosphatidylcholine. The PEG-lipids contain PEG of molecular weight 2000 or 5000. We show that the transition from a dispersed lamellar phase (liposomes) to a micellar phase consisting of small spherical micelles occurs via the formation of small discoidal micelles. The onset of disk formation already takes place at low PEG-lipid concentrations (<5 mol %) and the size of the disks decreases as more PEG-lipid is added to the lipid mixture. We show that the results from cryo-transmission electron microscopy correlate well with those obtained from dynamic light scattering and that the disks are well described by an ideal disk model. Increasing the temperature, from 25 degrees C to above the gel-to-liquid crystalline phase transition temperature for the respective lipid mixtures, has a relatively small effect on the aggregate structure.  相似文献   

8.
Unilamellar vesicles of varying and reasonably uniform size were prepared from 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) by the extrusion procedure and sonication. Quasi-elastic light scattering was used to show that different vesicle preparations had mean (Z-averaged) diameters of 1340, 900, 770, 630, and 358 A (sonicated). Bilayer-phase behavior as detected by differential scanning calorimetry was consistent with the existence of essentially uniform vesicle populations of different sizes. The response of these different vesicles to treatment with poly(ethylene glycol) (PEG) was monitored using fluorescence assays for lipid transfer, contents leakage, and contents mixing, as well as quasi-elastic light scattering. No fusion, as judged by vesicle contents mixing and change in vesicle size, was detected for vesicles of diameter greater than 770 A. The diameters of smaller vesicles increased dramatically when treated with high concentrations of PEG, although mixing of their contents could not be detected both because of their small trapped volumes and because of the extensive leakage induced in small vesicles by high concentrations of PEG. Lipid transfer was detected between vesicles of all sizes. We conclude the high bilayer curvature does encourage fusion of closely juxtaposed membrane bilayers but that highly curved vesicles appear also to rupture and form larger structures when diluted from high PEG concentration, a process that can be confused with fusion. Despite the failure of PEG to induce fusion of large, uncurved vesicles composed of a single phosphatidylcholine, these vesicles can be induced to fuse when they contain small amounts of certain amphiphathic compounds thought to play a role in cellular fusion processes. Thus, vesicles which contained 0.5 mol % L-alpha-lysopalmitoylphosphatidylcholine, 5 mol % platelet activating factor, or 0.5 mol % palmitic acid fused in the presence of 30%, 25%, and 20% (w/w) PEG, respectively. However, vesicles containing 1,2-dipalmitoyl-sn-glycerol, 1,2-dioleoyl-sn-glycerol, 1-oleoyl-2-acetyl-sn-glycerol, or monooleoyl-rac-glycerol at surface concentrations up to 5 mol % did not fuse in the presence or absence of PEG. There was no correlation between the abilities of these amphipaths to induce phase separation or nonlamellar phases and their abilities to support fusion of pure DPPC unilamellar vesicles in the presence of high concentrations of PEG. The results are discussed in terms of the type of disrupted lipid packing that could be expected to favor PEG-mediated fusion.  相似文献   

9.
BACKGROUND: We have studied the effects of the poly(ethylene glycol) (PEG) chain length and acyl chain composition on the pH-sensitivity of acid-labile PEG-diorthoester (POD) lipids. The optimal conditions are described for preparation of DNA plasmid encapsulated POD nanolipoparticles (NLPs) which mediate high gene delivery activity in vitro with moderate cytotoxicity. METHODS AND RESULTS: A series of POD lipids with various PEG chain lengths (750, 2000, and 5000 Da) or acyl chains (distearoyl 18:0 or dioleoyl 18:1) were incorporated into DNA containing NLPs or model liposomes as a stealth and bioresponsive component. We investigated the collapse kinetics of the POD-stabilized liposomes when the PEG chain length was changed. We optimized a detergent dialysis method to encapsulate plasmid DNA into NLPs prepared from a mixture of the various POD lipids, cationic lipid and phosphatidylethanolamine lipid. A critical concentration (28 mM) of n-octyl-beta-D-glucopyranoside (OG) enabled high encapsulation of DNA plasmid into 100 nm particles with a neutral surface charge. The POD NLPs are stable at pH 8.5 but rapidly collapse (approximately 10 min) into aggregates at pH 5.0. In the detergent solution there is a metastable DNA-lipid intermediate that evolves into a stable NLP if the detergent is removed shortly after adding DNA to the lipid-detergent mixture. The rank order of transfection activity from NLPs containing PEG-lipid was POD 750 > POD 5000 = POD 2000 > non-pH-sensitive PEG-lipid. The particle size stability was in the reverse order. Binding of the NLPs to cells reached a maximum level by 12 hours. The POD NLPs had slightly less transfection activity but considerably lower cytotoxicity than the PEI-DNA polyplex. CONCLUSIONS: Of the PEG-orthoester lipids tested, POD 2000 is the better choice for the preparation of sterically stabilized NLPs with a small particle diameter, good stability, low cytotoxicity, and satisfactory transfection activity.  相似文献   

10.
Phospholipids with covalently attached poly(ethylene glycol) (PEG lipids) are commonly used for the preparation of long circulating liposomes. Although it is well known that lipid/PEG-lipid mixed micelles may form above a certain critical concentration of PEG-lipid, little is known about the effects of PEG-lipids on liposome structure and leakage at submicellar concentrations. In this study we have used cryogenic transmission electron microscopy to investigate the effect of PEG(2000)-PE on aggregate structure in preparations of liposomes with different membrane compositions. The results reveal a number of important aggregate structures not documented before. The micrographs show that enclosure of PEG-PE induces the formation of open bilayer discs at concentrations well below those where mixed micelles begin to form. The maximum concentration of PEG-lipid that may be incorporated without alteration of the liposome structure depends on the phospholipid chain length, whereas phospholipid saturation or the presence of cholesterol has little or no effect. The presence of cholesterol does, however, affect the shape of the mixed micelles formed at high concentrations of PEG-lipid. Threadlike micelles form in the absence of cholesterol but adapt a globular shape when cholesterol is present.  相似文献   

11.
To conjugate water-soluble macromolecules on the surface of phospholipid vesicles, we synthesized a poly(ethylene glycol) (PEG)-lipid having four acyl chains using a lysine (Lys)-type monodendron structure. One end of the diamino-PEG was amidified with Lys, and then two amino groups of the Lys moiety were amidified with two Lys derivatives which had been acylated with two stearoyl groups. The other end of the PEG was activated with a triazine group or a pyridyldithio group. The hydrate of the lipid mixture of dipalmitoylphosphatidylcholine, cholesterol, dipalmitoylphosphatidylglycerol, and the PEG-lipid at a molar ratio of 5/5/1/0.3 was extruded in order to prepare the phospholipid vesicles with the average diameter of 270 +/- 20 nm. The coupling ratio of cytochrome c with the PEG-lipid was monitored by HPLC, detecting the pyridyl 2-thione liberated from the pyridyldithio group and determining it to be 26% on the basis of the incorporated PEG-lipid.  相似文献   

12.
The critical micelle concentrations of 1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[monomethoxy poly(ethylene glycol) (5000)] (PEG-DPPE) and its distearoyl analogue (PEG-DSPE) were 70 and 9 microM, respectively, in buffer solutions ([Tris] = 20 mM, [NaCl] = 140 mM, pH 7.4) at 37 degrees C. When these PEG-lipid micelle dispersions were mixed with the dispersions of phospholipid vesicles comprised of a C16 membrane, of which the carbon number is 16, or a C18 membrane, the PEG-lipid micelles were dissociated into monomers and then spontaneously incorporated into the surface of the preformed vesicles. The incorporation rates and the enthalpy changes during incorporation were measured with an isothermal titration microcalorimeter. The incorporation rate of PEG-DPPE was faster than that of PEG-DSPE, because the dissociation rate of the PEG-DPPE micelles was faster than that of PEG-DSPE micelles. The incorporation equilibrium constant of PEG-DSPE was larger than that of PEG-DPPE due to its slow dissociation rate from the membrane, caused by the stronger hydrophobic interaction. The combination of PEG-DSPE and the C18 membrane was the most thermodynamically stabilized pair. Furthermore, the dispersion stability of the surface-modified vesicles prepared by this spontaneous incorporation was analyzed by using the critical molecular weight of the polymer for the aggregation of vesicles. The aggregation of the vesicles was successfully supressed with an increase in the molecular weight of the PEG in the PEG-lipid and its incorporation ratio.  相似文献   

13.
In this work, we report the formation of complexes by self-assembly of bovine serum albumin (BSA) with a poly(ethylene glycol) lipid conjugate (PEG2000-PE) in phosphate saline buffer solution (pH 7.4). Three different sets of samples have been studied. The BSA concentration remained fixed (1, 0.01, or 0.001 wt % BSA) within each set of samples, while the PEG2000-PE concentration was varied. Dynamic light scattering (DLS), rheology, and small-angle X-ray scattering (SAXS) were used to study samples with 1 wt % BSA. DLS showed that BSA/PEG2000-PE aggregates have a size intermediate between a BSA monomer and a PEG2000-PE micelle. Rheology suggested that BSA/PEG2000-PE complexes might be surrounded by a relatively compact PEG-lipid shell, while SAXS results showed that depletion forces do not take an important role in the stabilization of the complexes. Samples containing 0.01 wt % BSA were studied by circular dichroism (CD) and ultraviolet fluorescence spectroscopy (UV). UV results showed that at low concentrations of PEG-lipid, PEG2000-PE binds to tryptophan (Trp) groups in BSA, while at high concentrations of PEG-lipid the Trp groups are exposed to water. CD results showed that changes in Trp environment take place with a minimal variation of the BSA secondary structure elements. Finally, samples containing 0.001 wt % BSA were studied by zeta-potential experiments. Results showed that steric interactions might play an important role in the stabilization of the BSA/PEG2000-PE complexes.  相似文献   

14.
Sarcoplasmic reticulum (SR) membranes isolated from rabbit skeletal muscle were reconstituted into two types of giant vesicles: (1) Giant proteoliposomes prepared by freeze-thawing of a mixture of SR vesicles and sonicated phospholipid vesicles without the use of detergent. (2) Giant SR vesicles prepared by fusion of SR vesicles using poly(ethylene glycol) (PEG) as a fusogen and without the addition of exogenous lipid. These giant vesicles were patch-clamped and properties of the single voltage-dependent potassium channel in the excised patch were studied. Single-channel conductance in a symmetrical solution of 0.1 M KCl and 1 mM CaCl2 was 140.0 +/- 10 pS (n = 5) for freeze-thawed vesicles and 136.4 +/- 15 pS (n = 7) for PEG vesicles. Both types of vesicles exhibited a sub-conductance state having 55% of the fully open state conductance. The voltage-dependence of open-channel probability could be expressed in terms of thermodynamic parameters of delta Gi = 0.95 kcal/mol and z = -0.77 for freeze-thawed vesicles and delta Gi = 0.92 kcal/mol and z = -0.87 for PEG vesicles. These values correlated well with previous data obtained by fusion of native SR vesicles with a planar lipid membrane. Channel orientation was found to be conserved in both types of vesicles used in the present study.  相似文献   

15.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

16.
Cultured ascites tumor cells and their lipid-depleted variants, which contained 35-40% less membrane phospholipid and cholesterol, were used for fusion experiments with unilamellar lipid vesicles which were between 300 and 600 nm in diameter. Vesicle-cell interaction was followed by tracer studies using vesicles double-labeled in the lipid moiety, by vesicle-encapsulated [3H] dextran, and by measurements of energy transfer between N-(10-[1-pyrene]decanoyl)sphingomyelin-labeled vesicles and alpha-parinaric acid-labeled cells in the presence of poly(ethylene glycol) (PEG) as fusogen. The reaction rates measured with the radiolabeled vesicles were found to follow patterns similar to those obtained with the resonance energy transfer assay. This latter method revealed a vesicle-cell membrane fusion reaction, which was substantiated by radiolabeling the internal cellular compartment after treatment of the cells with [3H]dextran-encapsulated vesicles as shown by electron microscopic autoradiography on semi-thin sections. Endocytosis as a reaction mechanism can be excluded, since no energy transfer was observed at 25 degrees C in the absence of PEG. Investigations of vesicle bilayer order and fluidity on vesicle-cell interaction revealed optimal reactivity, with intermediate fluidity corresponding to cholesterol/phospholipid ratios between 0.7 and 1.0 and fluorescence depolarization (P) values of 0.18 and 0.21. Lipid depletion decreased the reaction velocity between cells and vesicles by about 20%, exhibiting V values of 33.2 mumol/min, as compared to the control of 41.4 mumol/min determined for 10(7) cells. The affinity constants for vesicle lipid were affected only slightly with Km values of 0.195 mM (0.210 mM). The activation energies for the reaction were calculated to give values of EA = 22.44 kJ/mol for the control and of EA = 20.4 kJ/mol for the modified cells. These data indicate that the decrease in membrane lipid content apparently has no major influence on the extent of the interaction.  相似文献   

17.
Spin-label electron spin resonance (ESR) spectroscopy and auxiliary optical density measurements are used to study lipid dispersions of N-poly(ethylene glycol)-dipalmitoyl phosphatidylethanolamine (PEG:5000-DPPE) mixed with dipalmitoyl phosphatidylcholine (DPPC). PEG:5000-DPPE bears a large hydrophilic polymer headgroup (with approximately 114 oxyethylene monomers) and is commonly used for steric stabilization of liposomes used in drug delivery. Comparison is made with results from mixtures of DPPC with polymer lipids bearing shorter headgroups (approximately 45 and 8 oxyethylene monomers). ESR spectra of phosphatidylcholine spin-labeled on the 5-C atom position of the sn-2 chain are shown to reflect the area expansion of the lipid membranes by the lateral pressure exerted in the polymer brush, in a way that is consistent with theory. The lipid chain packing density at the onset of micelle formation is the same for all three PEG-lipids, although the mole fraction at which this occurs differs greatly. The mole fraction at onset scales inversely with the size of the polymer headgroup, where the experimental exponent of 0.7 is close to theoretical predictions (viz. 0.55-0.6). The mole fraction of PEG-lipid at completion of micelle formation is more weakly dependent on polymer size, which conforms with theoretical predictions. At high mole fractions of PEG:5000-DPPE the dependence of lipid packing density on mole fraction is multiphasic, which differs qualitatively from the monotonic decrease in packing density found with the shorter polymer lipids. Lipid spin-label ESR is an experimental tool that complements theoretical analysis using polymer models combined with the lipid equation of state.  相似文献   

18.
Haque ME  Lentz BR 《Biochemistry》2002,41(35):10866-10876
The fusion peptide of the HIV fusion protein gp41 is required for viral fusion and entry into a host cell, but it is unclear whether this 23-residue peptide can fuse model membranes. We address this question for model membrane vesicles in the presence and absence of aggregating concentrations of poly(ethylene glycol) (PEG). PEG had no effect on the physical properties of peptide bound to membranes or free in solution. We tested for fusion of both highly curved and uncurved PC/PE/SM/CH (35:30:15:20 mol %) vesicles and highly curved PC/PE/CH (1:1:1) vesicles treated with peptide in the presence and absence of PEG. Fusion was never observed in the absence of PEG, although high peptide concentrations led to aggregation and rupture, especially in unstable PC/PE/CH (1:1:1) vesicles. When 5 wt % PEG was present to aggregate vesicles, peptide enhanced the rate of lipid mixing between curved PC/PE/SM/CH vesicles in proportion to the peptide concentration, with this effect leveling off at peptide/lipid (P/L) ratios approximately 1:200. Peptide produced an even larger effect on the rate of contents mixing but inhibited contents mixing at P/L ratios >1:200. No fusion enhancement was seen with uncurved vesicles. The rate of fusion was also enhanced by the presence of hexadecane, and peptide-induced rate enhancement was not observed in the presence of hexadecane. We conclude that gp41 fusion peptide does not induce vesicle fusion at subrupturing concentrations but can enhance fusion between highly curved vesicles induced to fuse by PEG. The different effects of peptide on the rates of lipid mixing and fusion pore formation suggest that, while gp41 fusion peptide does affect hemifusion, it mainly affects pore formation.  相似文献   

19.
R I MacDonald 《Biochemistry》1985,24(15):4058-4066
To determine whether polyethylene glycol (PEG) causes growth of liposomes by affecting them directly or indirectly, vesicles composed of phosphatidylcholine were exposed to increasing concentrations of Mr 15 000-20 000 PEG or Mr 40 000 dextran either by direct mixing or across a dialysis membrane. After incubation at room temperature and dilution below at least 5% (w/w) polymer, the vesicles were monitored for fluorescence energy transfer and for absorbance at 400 nm. PEG induced the same levels of dequenching or lipid mixing and increased turbidity, regardless of whether the vesicles had been mixed directly with or dialyzed against PEG. These changes occurred within 5-15 min of polymer application. It is concluded that the increased lipid mixing and/or increased turbidity, indicating vesicle growth, resulted from an indirect effect of PEG on the vesicles--most likely dehydration. Dextran, in contrast to PEG, induced less dequenching and/or less turbidity increase when vesicles were directly mixed with, as opposed to dialyzed against, dextran. Although dextran not in contact with vesicles and with osmotic activity comparable to PEG was able to cause a degree of membrane fusion similar to that of PEG, therefore, the dehydrating effect of dextran could be mitigated if it were allowed to interact with vesicles. In further support of membrane dehydration as a precursor to membrane fusion, lipid mixing among sonicated and sonicated, frozen-thawed vesicles dialyzed against sucrose increased as a function of sucrose concentration. Vesicle morphology generally determined the maximal degree of membrane fusion inducible by the polymers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Lipid organization and lipid transport processes occurring at the air-water interface of a liposome (lipid vesicle) solution are studied by conventional surface pressure-area measurements and interpreted by an adequate theory. At the interface of a dioleoyl phosphatidylcholine vesicle solution, used for demonstration, a well defined two layer structure selfassembles: vesicles disintegrate at the interface forming a surface-adsorbed lipid monolayer, which prevents further disintegration beyond about 1 dyne/cm surface pressure. A layer of vesicles now assembles in close association with the monolayer. This layer is in vesicle diffusion exchange with the solution and in lipid exchange with the monolayer. The lipid exchange occurs exclusively between the monolayer and the outer lipid layer of the vesicles; it is absent between outer and inner vesicle layers. Equilibration of the lipid density in the monolayer with that in the vesicle outer layer provides a coherent and quantitative explanation of the observed hysteresis effects and equilibrium states. The correspondence between monolayer and vesicle outer layer is traced down to equilibrium constants and rate constants and their dependences on surface pressure, vesicle size and concentration. p] Other alternate realizations of surface structure and exchange, including induced lipid flip-flop within vesicles or vesicle monolayer adhesion or fusion are potential applications of the proposed analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号