首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
庭疾灶螽中肠及马氏管结构   总被引:1,自引:0,他引:1  
【目的】本研究旨在以庭疾灶螽Tachycines asynamorus为例探索驼螽消化系统和排泄系统在结构上与其生活环境的适应关系。【方法】运用解剖学方法、石蜡切片技术、冰冻切片技术及超薄切片技术对庭疾灶螽中肠及马氏管的结构进行研究。【结果】庭疾灶螽中肠向前延伸出3个胃盲囊包围着前胃。中肠上皮由再生细胞、柱状上皮细胞和内分泌细胞构成,具有典型的再生细胞龛;闭合型内分泌细胞紧贴在再生细胞龛的外围,基底区聚集大量的分泌颗粒。柱状上皮细胞内聚集有2类大的分泌颗粒:线团状颗粒和电子密度很高的球状颗粒;中肠管腔内有明显的围食膜结构,中肠基底部由基膜和肌肉层组成。马氏管着生在中后肠的交界处,从横切面看马氏管管壁具有3~5个细胞,细胞近管腔端部具有大量长微绒毛,细胞质内分布着电子致密的同心圆球晶体,基底膜内折形成膜迷路。【结论】庭疾灶螽中肠柱状上皮细胞的线团状颗粒由微丝包裹;内分泌细胞由再生细胞龛中的细胞分化而来,产生内分泌颗粒并将其排到血腔;中肠基膜发达,包含微丝与复合糖成分,基膜通过对中肠上皮细胞的支撑作用为肠道蠕动提供保障。庭疾灶螽马氏管细胞中可见大量颗粒和大量同心圆球晶体,推测可能是一种储存排泄。  相似文献   

2.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

3.
Triatoma vitticeps (Stal, 1859) is a hematophagous Hemiptera that, although being considered wild, can be found in households, being a potential Chagas’ disease vector. This work describes the histology and ultrastructure of the midgut of T. vitticeps under different starvation periods. Fifteen adults of both sexes starved for 3, 7, 20 and 25 days were studied. In general, digestive cells had apical microvilli, basal plasma membrane infoldings and central nucleus. The perimicrovillar membrane was found in all insects examined. Digestive cells of anterior midgut had lipid droplets, glycogen granules, developed basal labyrinth associated with mitochondria suggesting their role in nutrient storage and in fluid and ion transport. The cells of median and posterior regions of the midgut were rich in rough endoplasmic reticulum, lysosomes, vesicles and granules with different electron-densities. Moreover, cells of the posterior portion of the midgut had hemozoyn granules and mitochondria in the apical cytoplasm close to microvilli, suggesting their role in blood digestion and active nutrient absorption. The midgut of T. vitticeps showed differences in digestive cells associated with the time after feeding, and the increase of vesicles amount in long starvation periods, which suggests enzyme storage, which is readily used after a blood meal.  相似文献   

4.
Fine structure of the midgut and degeneration of the midgut epithelium of the scorpionfly Sinopanorpa tincta (Navás) adults were investigated using light microscopy and scanning and transmission electron microscopy. The results show that the tubular midgut lacks gastric caeca and is composed of an outer longitudinal and an inner circular muscle layer, a basal lamina, an epithelium and a lumen from the outside to inside. A peritrophic membrane was not found in the lumen. A mass of nodules was observed on the surface of the basal lamina. Three types of cells were recognized in the epithelium: digestive, secretory, and regenerative cells. The digestive cells contain irregular-shaped infoldings in the basal membrane and two types of microvilli in the apical membrane. The secretory cells are characterized by irregular shape and large quantities of secretory granules in the basal cytoplasm. The regenerative cells are triangular in shape and distributed only in the nodules. The epithelial cells are degenerated through programmed cell-death mechanisms (apoptosis and necrosis). The type, function, and degeneration of the epithelial cells of the midgut are briefly discussed.  相似文献   

5.
The midgut of adult female Anopheles darlingi is comprised of narrow anterior and dilated posterior regions, with a single layered epithelium composed by cuboidal digestive cells. Densely packed apical microvilli and an intricate basal labyrinth characterize each cell pole. Before blood feeding, apical cytoplasm contains numerous round granules and whorled profiles of rough endoplasmic reticulum. Engorgement causes a great distension of midgut. This provokes the flattening of digestive cells and their nuclei. Simultaneously, apical granules disappear, the whorls of endoplasmic reticulum disassemble and 3h post bloodmeal (PBM), nucleoli enlarge manyfold. An intense absorptive process takes place during the first 24 h PBM, with the formation of large glycogen inclusions, which persist after the end of the digestive process. Endoproteases activities are induced after bloodmeal and attain their maximum values between 10 and 36 h PBM. At least two different aminopeptidases seem to participate in the digestive process, with their maximum activity values at 36 and 48 h PBM, respectively. Coarse electrondense aggregates, possibly debris from digested erythrocytes, begin to appear on the luminal face of the peritrophic membrane from 18 h PBM and persist during all the digestive process, and are excreted at its end. We suggest that these aggregates could contain some kind of insoluble form of haem, in order of neutralize its toxicity.  相似文献   

6.
The tissue used in this study was the midgut of the tobacco hornworm larva, Manduca sexta. The midgut epithelium is a single layer of cells resting on a thin basal lamina and underlying discontinuous muscle layer. The epithelial cells are of two main types, goblet and columnar cells, joined together by the septate junctions characteristic of insect epithelia. From this tissue we were able to isolate four distinct plasma membrane fractions; the lateral membranes, the columnar cell apical membrane, the goblet cell apical membrane and a preparation of basal membranes from both cell types. The lateral membranes were isolated by density gradient centrifugation following gentle homogenization of the midgut hypotonic medium, which caused the cells to rupture at their apical and basal surfaces, releasing long segments of lateral membranes still joined by their septate junctions. For isolation of apical and basal membranes the tissue was disrupted by ultrasound, based on the light microscopic observation that carefully controlled ultrasound can be used to disrupt each cell in layers starting at the apical surface. The top layer contained the columnar cell apical membrane, which consists of microvilli forming a brush border covering the lumenal surface of the epithelium. The second layer contained the goblet cell apical membrane, which is invaginated to form a cavity occupying the apical half of the cell, and the third layer contained the basal membranes. As each layer was stripped off the epithelium it was collected and the plasma membrane purified by differential or density gradient centrifugation. For all four membrane fractions, the isolation procedure was designed to preserve the original structure of the membrane as far as possible. This allowed electron microscopy to be used to follow each step in the isolation procedure, and to identify the constituents of each subcellular preparation. Although developed specifically for M. sexta midgut, these techniques could readily be modified for use on other epithelia.  相似文献   

7.
Bumblebees are widely distributed across the world and have great economic and ecological importance as pollinators in the forest as well as in agriculture. The insect midgut consists of three cell types, which play various important roles in digestion, absorption, and hormone production. The present study characterized the anterior and posterior midgut regions of the bumblebee, Bombus morio. The digestive, regenerative and endocrine cells in the midgut showed regional differences in their number, nuclear size, as well as the size of the striated border. Ultrastructurally, the digestive cells contained many mitochondria and long microvilli; however, in the anterior midgut region, these cells showed dilated basal labyrinths with a few openings for the hemocoel, whereas the labyrinths of the basal posterior region remained inverse characteristics. Thus, the characterization of the midgut of B. morio supported an ecto-endoperitrophic circulation, contributing to a better understanding of the digestive process in this bee.  相似文献   

8.
The midgut of Rhynchosciara americana larvae consists of a cylindrical ventriculus from which protrudes two gastric caeca formed by polyhedral cells with microvilli covering their apical faces. The basal plasma membrane of these cells is infolded and displays associated mitochondria which are, nevertheless, more conspicuous in the apical cytoplasm. The anterior ventricular cells possess elaborate mitochondria-associated basal plasma membrane infoldings extending almost to the tips of the cells, and small microvilli disposed in the cell apexes. Distal posterior ventricular cells with long apical microvilli are grouped into major epithelial foldings forming multicellular crypts. In these cells the majority of the mitochondria are dispersed in the apical cytoplasm, minor amounts being associated with moderately-developed basal plasma membrane infoldings. The proximal posterior ventriculus represents a transition region between the anterior ventriculus and the distal posterior ventriculus. The resemblance between the gastric caeca and distal posterior ventricular cells is stressed by the finding that their microvilli preparations display similar alkaline phosphatase-specific activities. The results lend support to the proposal, based mainly on previous data on enzyme excretion rates, that the endo-ectoperitrophic circulation of digestive enzymes is a consequence of fluid fluxes caused by the transport of water into the first two thirds of midgut lumen, and its transference back to the haemolymph in the gastric caeca and in the distal posterior ventriculus.  相似文献   

9.
We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.  相似文献   

10.
The digestive tract of a harpacticoid copepod, Tigriopus californicus (Baker), was studied by using techniques of light and electron microscopy. Four cell types could be distinguished: type 1, an embryonic cell which will replace cells worn away or lost during secretion; type 2, a cell which synthesizes and secretes proteins and also plays a role in lipid absorption; and types 3 and 4, two cell types which absorb lipids. From the abundance of each cell type, the length of microvilli, the development of basal plasma membrane (PM), and luminal projections, the following conclusions were made. (1) The midgut caecum absorbs digested nutrients. (2) The anterior midgut absorbs nutrients and more importantly functions in merocrine and exocrine secretion. The presence of concretions in cell types 2 and 3 in the anterior midgut suggests that these tissues contribute in excretion, and in water and/or ion regulation. (3) The posterior midgut absorbs nutrients and contributes some holocrine secretion.  相似文献   

11.
Summary Exocytotic release of the secretory granules of the endocrine cells in the midgut of a cockroach, Periplaneta americana, was studied by means of fixation with tannic acid in combination with glutaraldehyde and osmium tetroxide. A sequence of images indicative of exocytosis suggests the following steps in this process: (1) A delicate connection appears between the granule-limiting membrane and the plasma membrane. (2) The plasma membrane approaches the granule, forming a concave indentation. (3) The granule-limiting membrane fuses with the plasma membrane and opens to give rise to an omega profile. (4) The granule content is voided into extracellular space. Exocytosis occurs not only at the base of the cell but occasionally at its side facing adjacent cells. (5) The exocytotic invagination after release becomes smaller and narrower; sometimes a coated pit with bristles appears. Multiple exocytosis, and exocytosis in the endocrine cells of the nidus, i.e., the regenerative cell mass, are also described.  相似文献   

12.
The midgut of unfed larvae and adult mites of Platytrombidium fasciatum (C.L. Koch, 1836) and Camerotrombidium pexatum (C.L. Koch, 1937) (Acariformes: Microtrombidiidae) was investigated by electron microscopy. The sac-like midgut occupies the entire body volume, ends blindly and is not divided into functionally differentiated diverticula or caeca. The midgut walls are composed of one type of digestive cell that greatly varies in shape and size. In larvae, the lumen of the midgut is poorly recognizable and its epithelium is loosely organized, although yolk granules are already utilized. In adults, the midgut forms compartments as a result of deep folds of the midgut walls, and the lumen is well distinguished. The epithelium is composed of flat, prismatic or club-like cells, which may contain nutritional vacuoles and residual bodies in various proportions that depend on digestive stages. In both larvae and adult mites, parts of cells may detach from the epithelium and float within the lumen. The cells contain a system of tubules and vesicles of a trans-Golgi network, whereas the apical surface forms microvilli as well as pinocytotic pits and vesicles. Lysosome-like bodies, lipid inclusions and some amount of glycogen particles are also present in the digestive cells. Spherites (concretions) are not found to be a constant component of the digestive cells and in adult mites occur for the most parts in the midgut lumen.  相似文献   

13.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

14.
Raes H  Verbeke M 《Tissue & cell》1994,26(2):223-230
The occurrence, development and ultrastructure of two types of gut endocrine cell have been studied in the midgut of adult honeybees. These cells, one of a basal granular type and one of a vesicular type, are evenly distributed throughout the posterior three-quarters of the midgut. Each crypt complex contains one of each cell type, both of which may be derived from the same stem cells as the enterocytes. They already contain their respective secretory product while still in the nidus. Both reach the midgut lumen by a narrow apex and are therefore of the open type. The granular cells release their secretory granules at the cell base in a typical endocrine way. In young vesicular cells the secretory vesicles are released at the cell base and in the intercellular spaces. Old cells are still filled with vesicles when they are shed in the midgut lumen. This seems to indicate that these cells have both an endocrine (or paracrine) and an exocrine function, the latter apparently by holocrinc release.  相似文献   

15.
Arab A  Caetano FH 《Cytobios》2001,105(408):45-53
Solenopsis saevissima has a midgut composed of columnar, regenerative, and goblet cells. The midgut epithelium was covered by a basal lamina. Outside the basal lamina, layers of inner oblique, circular, and outer longitudinal muscles were present. Columnar cells showed a basal plasma membrane containing numerous folds, mitochondria, and the nucleus. Rough endoplasmic reticulum, Golgi bodies, membrane bounded vacuoles, and spherocrystals were found in this region. The apical plasma membrane was constituted by microvilli, which were above a region rich in mitochondria. Regenerative cells were found in groups lying by the basal lamina. Goblet cells were associated with an ion-transporting mechanism between the haemolymph and the midgut epithelium. These cells were lying by the midgut lumen and large microvilli were evident, but the cytoplasmic features were similar to the columnar cells.  相似文献   

16.
This paper presents information on the organization of the midgut and its epithelium ultrastructure in juvenile and adult specimens of Piscicola geometra (Annelida, Hirudinea), a species which is a widespread ectoparasite found on the body and gills and in the mouth of many types of fish. The analysis of juvenile nonfeeding specimens helped in the explanation of all alterations in the midgut epithelium which are connected with digestion. The endodermal portion (midgut) of the digestive system is composed of four regions: the esophagus, the crop, the posterior crop caecum, and the intestine. Their epithelia are formed by flat, cuboidal, or columnar digestive cells; however, single small cells which do not contact the midgut lumen were also observed. The ultrastructure of all of the regions of the midgut are described and discussed with a special emphasis on their functions in the digestion of blood. In P. geometra, the part of the midgut that is devoid of microvilli is responsible for the accumulation of blood, while the epithelium of the remaining part of the midgut, which has a distinct regionalization in the distribution of organelles, plays a role in its absorption and secretion. Glycogen granules in the intestinal epithelium indicate its role in the accumulation of sugar. The comparison of the ultrastructure of midgut epithelium in juvenile and adult specimens suggests that electron-dense granules observed in the apical cytoplasm of digestive cells take part in enzyme accumulation. Numerous microorganisms were observed in the mycetome, which is composed of two large oval diverticles that connect with the esophagus via thin ducts. Similar microorganisms also occurred in the cytoplasm of the epithelium in the esophagus, the crop, the intestine, and in their lumen. Microorganisms were observed both in fed adult and unfed juvenile specimens of P. geometra, which strongly suggests that vertical transmission occurs from parent to offspring.  相似文献   

17.
通过光镜和电镜观察了中华硬蜱Ixodes sinensis叮咬初次和再次感染宿主新西兰兔后不同时间(叮咬后24 h、48 h、72 h以及第 5天、第8天)中肠上皮组织的形态学动态变化。结果显示: 中华硬蜱叮咬前中肠上皮主要由替代细胞和少量体积较大的消化细胞构成;替代细胞数量多、体积小、呈圆形、胞质染色浅 。中华硬蜱叮咬初次感染宿主后,消化细胞随叮咬时间延长而增多增大,微绒毛较密集,排列整齐,胞质内细胞器丰富,各单位膜结构清晰,并出现顶端小管、小泡、大量脂滴和高铁血红素颗粒;近基膜的细胞膜内褶形成发达的基底迷路系统。中华硬蜱叮咬再次感染宿主后,中肠可发生一系列明显的病理变化,中肠基膜出现变薄、松散和断裂现象,消化细胞破裂、空泡化,消化细胞数量减少;消化细胞微绒毛减少、变短、排列不整,线粒体肿大,体嵴减少、变短甚至髓样变,粗面内质网扩张,脂粒及高铁血红素颗粒减少,细胞膜吞饮、吞噬现象减弱,消化细胞内结构紊乱和破坏。该研究结果提示初次叮咬导致了宿主的免疫抗性,再次叮咬后蜱中肠是宿主免疫力的主要作用部位。  相似文献   

18.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

19.
In the gastrointestinal tract somatostatin is localized in endocrine cells and in neurons. The antral somatostatin (D-) cell shares features of both cell types. The activity of the antral D-cell is regulated by intragastric pH. Therefore different states of gastric acidity were induced experimentally in order to study D-cell morphology at the electron microscopical level. The morphological findings were related to measurements of plasma and tissue concentrations of the peptide. The D-cell is characterized by extensive membrane interdigitations with neighbouring cells. Changes in the activity of antral D-cells are reflected by an increase in cytoplasmic secretory granule density and a shift of secretory granules towards basal cell processes. Direct endocrine cell contacts at the level of the perikarya were rarely observed. The intracellular distribution of secretory granules suggests that cell communication is more likely to take place at the level of the strongly immunoreactive cytoplasmic processes. No evidence for endocrine or exocrine (luminar) secretion was observed morphologically. This is in agreement with the concept of paracrine secretion of the antral D-cell.  相似文献   

20.
Summary In the gastrointestinal tract somatostatin is localized in endocrine cells and in neurons. The antral somatostatin (D-) cell shares features of both cell types. The activity of the antral D-cell is regulated by intragastric pH. Therefore different states of gastric acidity were induced experimentally in order to study D-cell morphology at the electron microscopical level. The morphological findings were related to measurements of plasma and tissue concentrations of the peptide. The D-cell is characterized by extensive membrane interdigitations with neighbouring cells. Changes in the activity of antral D-cells are reflected by an increase in cytoplasmic secretory granule density and a shift of secretory granules towards basal cell processes. Direct endocrine cell contacts at the level of the perikarya were rarely observed. The intracellular distribution of secretory granules suggests that cell communication is more likely to take place at the level of the strongly immunoreactive cytoplasmic processes. No evidence for endocrine or exocrine (luminar) secretion was observed morphologically. This is in agreement with the concept of paracrine secretion of the antral D-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号