首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our purpose was to explore relationships of freshwater planktonic and benthic community species richness with water chemistry parameters using a dataset of biological, chemical, and physical data from 550 lakes. This was done using multivariate (ordination), graphical, and correlation analyses. Although the lakes are rather similar in location (Belarus) and in being mostly eutrophic, they do show variations in water chemistry. We ordinated lakes by water chemistry variables, and then looked for correlations between the ordination axes and species richness in 10 taxonomic groups: Cyanobacteria, Chlorophyta, Bacillariophyta, Cladocera, Copepoda, Rotatoria, Mollusca, Trichoptera, Chironomidae, and aquatic macrophytes. The first four Principal Components Analysis (PCA) axes explained about 67% of the total variability in water chemistry. The axes represent water hardness (DIC, dissolved inorganic carbon), organic content (DOC, dissolved organic carbon), nutrients, and chlorides and sulfates. The PCA ordination revealed environmental gradients, but not the distinctive clusters of lakes. Species richness was most strongly correlated with the first PCA axis (DIC), which accounted for 29% of the total variation in water chemistry. Species richness was positively correlated with DIC for eight of 10 taxonomic categories. The second PCA axis (DOC), which accounted for 20% of total variation in water chemistry, was correlated with species richness in the three phytoplankton groups, and with chironomid species richness. The third PCA axis (nutrients, especially nitrogen, 11%) was correlated with species richness of copepoda, chironomids, and macrophytes. The fourth PCA axis (chloride and sulfate) accounted for only 7% of the total variance in water chemistry, and was significantly negatively correlated with species richness of rotifers, molluscs, and chironomids. In addition to these linear correlations, there were several significant non-linear relationships. DIC variables showed curvilinear (hump-shaped) relationship with benthos (all groups combined) and especially with molluscs, and DOC variables—with phytoplankton and benthos. Each community, and often separate taxonomic groups within community have their own optimal ranges of chemical concentrations, and various water chemistry variables showed significant curvilinear relationships with biodiversity, suggesting that the diversity of different major aquatic groups may be influenced by different chemicals. Handling editor: S. Declerck  相似文献   

2.
Fluctuations in the salinity and physicochemical characteristics of water quality were surveyed in brackish Lake Obuchi on the Shimokita Peninsula in Aomori, Japan. The mean salinity in the surface layer in all regions of Lake Obuchi was about 10 psu, whereas in the basin region at depths of greater than 3 m it was 20 psu. Furthermore, all the year round the halocline was formed at depths of 1–4 m. The maximum density gradient along a vertical axis in the center of the lake was observed at depths of 1–2 m in summer and 2–4 m in spring and fall. The depth of the maximum density gradient fluctuated with the seasons. In summer the water in the bottom layer was anoxic, and Fe, Mn, PO4 3−-P, and NH4 +-N supplied from the bottom sediment accumulated at high concentrations below the halocline. Thus, it was observed that the transfer of substances between the layers above and below the barrier formed by the halocline is suppressed. Although Lake Obuchi is small and shallow, the inflowing seawater easily resides, and a stable halocline readily forms because of the shape of its basin, which suddenly deepens on the Pacific Ocean side. Received: May 24, 1999 / Accepted: September 25, 1999  相似文献   

3.
Methane emissions along a salt marsh salinity gradient   总被引:4,自引:4,他引:4  
The seasonal flux of methane to the atmosphere was measured at three salt marsh sites along a tidal creek. Average soil salinities at the sites ranged from 5 to 17 ppt and fluxes ranged from below detection limits (less than 0.3 mgCH4 m-2 d-1) to 259 mgCH4 m-2 d-1. Annual flux to the atmosphere was 5.6 gCH4 m-2 from the most saline site, 22.4 gCH4 m-2 from the intermediate site, and 18.2 gCH4 m-2 from the freshest of the three sites. Regression of the amount of methane in the soil with flux indicates that changes in this soil methane can account for 64% of the observed variation in flux. Data on pore water distributions of sulfate suggests that the activity of sulfate reducing bacteria is a primary control on methane flux in these transitional environments. Results indicate that relatively high emissions of methane from salt marshes can occur at soil salinities up to approximately 13 ppt. When these data are combined with other tidal marsh studies, annual CH4 flux to the atmosphere shows a strong negative correlation with the long term average soil salinity over a range from essentially fresh water to 26 ppt.  相似文献   

4.
Fish and macrobenthos were sampled in four different marshes along the salinity gradient of the Schelde estuary, Belgium/Netherlands, to investigate the importance of marsh creeks as foraging grounds for the dominant, larger fish species. The total density and biomass of all the main macrobenthic taxa (Corophium volutator, Nereis diversicolor, Oligochaeta, Macoma baltica and Heteromastus fliliformis) were measured. The feeding habits of the larger predatory fishes (Platichthys flesus, Dicentrarchus labrax) were investigated. Qualitative and quantitative stomach analyses included the calculation of different indices, showing the niche breadth (as diet diversity) and the niche overlap (as similarity between the predators diet) for this habitat. These analyses showed that the two most important benthic prey species for P. flesus were C. volutator and N. diversicolor. D. labrax preyed upon a wider range of species, including C. volutator, N. diversicolor, Crangon crangon, Carcinus maenas and Orchestia spp. The stomach diversity of D. labrax and P. flesus showed differences between the marshes although there was no consistent pattern in diet composition, reflecting the opportunistic nature of feeding by these large predators. The fullness indices of both flounder and sea bass did not differ significantly along the salinity gradient and the estimated minimum consumption by these predators did not indicate a top-down control of the macrobenthic community. The salt marsh creeks seem to provide excess food for the visiting fish species. The benthic prey was present in very high abundances, which may suggest that the typical nursery species such as C. crangon and C. maenas, and early juveniles of P. flesus, D. labrax and Pomatoschistus microps were not preyed upon significantly. This supports the hypothesis that salt marsh creeks provide good refuge areas for nursery species against predation by larger fish.  相似文献   

5.
春季和夏季巢湖浮游生物群落组成及其动态分析   总被引:2,自引:0,他引:2  
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}    相似文献   

6.
7.
The abundance and composition of phytoplankton were investigated at six stations along a transect from the Barguzin River inflow to the central basin of Lake Baikal in August 2002 to clarify the effect of the river inflow on the phytoplankton community in the lake. The water temperature in the epilimnion was high near the shore at Station 1 (17.3°C), probably due to the higher temperature of the river water, and gradually decreased offshore at Station 6 (14.5°C). Thermal stratification developed at Stations 2–6, and a thermocline was observed at a 17–22-m depth at Stations 2–4 and an 8–12-m depth at Stations 5 and 6. The concentrations of nitrogen and phosphorus nutrients in the epilimnion at all stations were <1.0 μmol N l−1 and <0.16 μmol P l−1, respectively. Relatively high concentrations of nutrients (0.56–7.38 μmol N l−1 and 0.03–0.28 μmol P l−1) were detected in the deeper parts of the euphotic zone. Silicate was not exhausted at all stations (>20 μmol Si l−1). The chlorophyll a (chl. a) concentration was high (>10 μg l−1) near the shore at Station 1 and low (<3 μg l−1) at five other stations. The <2 μm fraction of chl. a in Stations 2–6 ranged between 0.80 and 1.85 μg l−1, and its contribution to total chl. a was high (>60%). In this fraction, picocyanobacteria were abundant at all stations and ranged between 5 × 104 and 5 × 105 cells ml−1. In contrast, chl. a in the >2 μm fraction varied significantly (0.14–11.17 μg l−1), and the highest value was observed at Station 1. In this fraction, the dominant phytoplankton was Aulacoseira and centric diatoms at Station 1 and Cryptomonas, Ankistrodesmus, Asterionella, and Nitzschia at Stations 2–6. The present study demonstrated the dominance of picophytoplankton in the pelagic zone, while higher abundance of phytoplankton dominated by diatoms was observed in the shallower littoral zone. These larger phytoplankters in the littoral zone probably depend on nutrients from the Barguzin River.  相似文献   

8.
Recent evidence reveals that food webs within the Malili Lakes, Sulawesi, Indonesia, support community assemblages that are made up primarily of endemic species. It has been suggested that many of the species radiations, as well as the paucity of cosmopolitan species in the lakes, are related to resource limitation. In order to substantiate the possibility that resource limitation is playing such an important role, a study of the phytoplankton and zooplankton communities of Lake Matano was implemented between 2000 and 2004. We determined species diversity, relative abundances, size ranges, and total biomass for the phytoplankton and zooplankton, including the distribution of ovigerous individuals throughout the epilimnion of Lake Matano in three field seasons. The phytoplankton community exhibited very low biomass (<15 μg l?1) and species richness was depressed. The zooplankton assemblage was also limited in biomass (2.5 mg l?1) and consisted only of three taxa including the endemic calanoid Eodiaptomus wolterecki var. matanensis, the endemic cyclopoid, Tropocyclops matanensis and the rotifer Horaella brehmi. Zooplankton were very small (<600 μm body length), and spatial habitat partitioning was observed, with Tropocylops being confined to below 80 m, while rotifer and calanoid species were consistently observed above 80 m. Less than 0.1% of the calanoid copepods in each year were egg-bearing, suggesting very low population turnover rates. It was concluded that chemical factors as opposed to physical or biological processes were regulating the observed very low standing crops of phytoplankton which in turn supports a very minimal zooplankton community restricted in both species composition and abundance. As chemical factors are a function of the catchment basin of Lake Matano, it is predicted that resource limitation has long played an important role in shaping the unique endemic assemblages currently observed in the food web of the lake.  相似文献   

9.
Question: What are the interactive roles of abiotic stress and plant interactions in mediating the zonation of the shrub Tamarix chinensis along a salinity gradient? Location: Yellow River estuary (37°46′N, 119°09′E), northeast China. Methods: We surveyed the zonation of T. chinensis along a salinity gradient and quantified its salt tolerance using a pot experiment. In two field experiments, we transplanted T. chinensis seedlings into salt marsh, transitional zone and upland habitats, manipulated neighbours and quantified survivorship and biomass to examine neighbour effects. We also quantified vegetation effects on abiotic conditions in each zone. Results: Tamarix chinensis dominated the transitional zone, but was absent in upland and salt marsh habitats. In the pot experiment, T. chinensis grew well in freshwater treatments, but was inhibited by increasing salinity. Field experiments revealed that competition from neighbours limited T. chinensis growth in the uplands, while T. chinensis transplants were limited, with or without neighbours, in the salt marsh by high soil salinity. In the transitional zone, however, T. chinensis transplants performed better with than without neighbours. Vegetation removal significantly elevated soil salinity in the transitional zone, but not in other zones. Conclusions: Competition, facilitation and abiotic stress are all important in mediating the zonation of T. chinensis. Within its physiological stress tolerance range, or fundamental niche, it is limited by plant competition in low salinity habitats, and facilitated by neighbours in high salt stress habitats, but cannot survive in salt marshes having salinities above its salt stress tolerance limit. Our results have implications for understanding the relationships between facilitation and stress gradients.  相似文献   

10.
Components of the pelagic food web in four eutrophic shallow lakes in two wetland reserves in Belgium (Blankaart and De Maten) were monitored during the course of 1998–1999. In each wetland reserve, a clearwater and a turbid lake were sampled. The two lakes in each wetland reserve had similar nutrient loadings and occurred in close proximity of each other. In accordance with the alternative stable states theory, food web structure differed strongly between the clearwater and turbid lakes. Phytoplankton biomass was higher in the turbid than the clearwater lakes. Whereas chlorophytes dominated the phytoplankton in the turbid lakes, cryptophytes were the most important phytoplankton group in the clearwater lakes. The biomass of microheterotrophs (bacteria, heterotrophic nanoflagellates and ciliates) was higher in the turbid than the clearwater lakes. Biomass and community composition of micro- and macrozooplankton was not clearly related to water clarity. The ratio of macrozooplankton to phytoplankton biomass – an indicator of zooplankton grazing pressure on phytoplankton – was higher in the clearwater when compared to the turbid lakes. The factors potentially regulating water clarity, phytoplankton, microheterotrophs and macrozooplankton are discussed. Implications for the management of these lakes are discussed.  相似文献   

11.
每日盐度波动对真盐生植物盐地碱蓬种内相互作用沿盐度梯度的影响 土壤盐度的异质性是河口潮间带的一个突出的环境特征,影响植物的生长和盐沼中生物相互作用的转变。本研究旨在探究盐度梯度和盐度波动对一种真盐生植物的种内相互作用的交互影响。  相似文献   

12.
Oil sands mining is a major disturbance to boreal landscapes in north-eastern Alberta, Canada. Freshwater peatlands dominate the landscape prior to mining, but the post-mining reclamation landscape will have wetlands that span a salinity gradient. Little is known about the native vegetation communities in subsaline and saline marshes in the boreal region, yet these communities offer the best potential for reclamation of wetlands after oil sands mining. The overall intent of this study is to provide information on natural wetland communities along a gradient of salinities that can be used to enhance oil sands wetland reclamation. Our specific study objectives were to: (1) characterize environmental conditions of industrial and natural wetlands, (2) characterize vegetation communities (composition and diversity) in these wetlands, (3) and explore how vegetation communities (composition and diversity) may be influenced by environmental conditions. We surveyed vegetation communities and environmental variables in 25 natural boreal wetlands along a salinity gradient and in 10 industrial marshes in the oil sands mining region. We observed an electrical conductivity (EC) range of 0.5-28 mS cm−1 in the wetlands, indicating that salinity similar to or higher than anticipated for oil sands reclamation is naturally present in some boreal wetlands. We observed low species richness in both industrial and natural wetlands. There were 101 plant species observed in all the wetlands, with 82 species recorded in the natural wetlands and 44 species in industrial wetlands. At the plot level, richness decreased with increasing EC and pH, but increased with soil organic matter. Using Cluster Analysis and indicator species analysis we defined 16 distinct vegetation community types, each dominated by one or two species of graminoid vegetation. In general these communities resembled those of boreal or prairie marshes. Electrical conductivity, pH, and water depth were important factors correlating with community composition of the wetlands, however peat depth and soil organic content did not differ among community types. Not all community types were present in industrial wetlands, indicating that these communities may need to be planted to enhance overall diversity in future reclaimed oil sands wetlands.  相似文献   

13.
The zonation of non-breeding waterbirds along the Schelde estuary (The Netherlands–Belgium), one of the longest estuaries in NW-Europe with still a complete salinity gradient, including a large freshwater tidal area, was described. Numbers of birds were counted monthly over the period October 1991 to June 1997. Highest numbers of waterbirds were observed in late autumn and winter, with annual peak numbers ranging between 150,000 and 235,000 individuals for the whole estuary. Based on a multivariate analysis different waterbird communities were observed along the salinity gradient. The polyhaline areas of the estuary were numerically dominated by the waders Oystercatcher and Dunlin. Due to the presence of a large brackish marsh in the mesohaline zone, the waterbird community in this area was dominated by the herbivores Wigeon and Greylag Goose. In the oligohaline and freshwater tidal areas, the waterbird community was dominated by duck species, with Teal and Mallard being the most important. The international importance of the Schelde estuary for waterbirds was evidenced by the fact that for 21 waterbird species the 1% level criterion, according to the Ramsar convention, was exceeded. The relation of the observed diversity and community patterns with the functional and habitat diversity of the Schelde estuary as well as the effect of recent conservation measures to preserve this habitat were discussed.  相似文献   

14.
There are several conflicting hypothesis that deal with the influence of flooding in the natural river–floodplain systems. According to the Flood Pulse Concept, the flood pulses are not considered to be a disturbance, while some recent studies have proven that floods can be a disturbance factor of phytoplankton development. In order to test whether flooding acts as a disturbance factor in the shallow Danubian floodplain lake (Lake Sakadaš), phytoplankton dynamics was investigated during two different hydrological years—extremely dry (2003) without flooding and usually flooded (2004). A total of 18 phytoplankton functional groups were established. The sequence of phytoplankton seasonality can be summarized P/D → E (W1, W2) → C/P (only in potamophase) → S2/H1/SN/S1 → W1/W2 → P/D. The canonical correspondence analysis (CCA) demonstrated that the water level was a significant environmental variable in 2004. Due to the higher total biomass of Bacillariophyceae established under potamophase conditions, floodings in the early spring seem to be a stimulating factor for phytoplankton development. On the other hand, the flood pulses in May and June had dilution effects on nutrients, so that a significantly lower phytoplankton biomass was established indicating that flooding pulses can be regarded as a disturbance event. Such conditions supported diatom development (D, P, C species) and prolonged its dominance in the total phytoplankton biomass. A long-lasting Cyanoprokaryota bloom (various filamentous species—S1, S2, SN and H1 representatives) with very high biomass characterized the limnophase (dry conditions) in summer and autumn of both years. In-lake variables (lake morphology, internal loadings of nutrients from sediments, light conditions) seem to be important for the appearance of Cyanoprokaryota bloom. The equilibrium phase was found during the Cyanoprokaryota bloom only in the extremely dry year. This study showed that depending on the time scale occurrence, flood pulses can be a stimulating or a disturbance factor for phytoplankton development in Lake Sakadaš. Handling editor: J. Padisak  相似文献   

15.
Lake Timsah is considered as the biggest water body at Ismailia City with a surface area of 14?km2. It is a saline shallow water basin lies approximately mid-way between the south city of Suez and the north city of Port Said at 30o35′46.55“N and 32o19′30.54″E. Because it receives water with high and low salinities, salinity stratification is producing in the Lake Timsah, with values of 14–40‰ for the surface water and over 40‰ for the bottom water. The temperature of the lake water decreased to below 19 °C in the winter and rose to above 29?°C in the summer; the concentration of dissolved oxygen ranged between 6.5 and 12.2?l?1 and the pH fluctuated between 7.9 in its lower value and 8.2 in its higher value. Water transparency was very low as indicated by Secchi disc readings recorded during this study and varied between 0.3 and 2.7?m. The main chemical nutrient (phosphorus) reached its highest levels of 96?µg?l?1 in winter and their lowest values of 24?µg?l?1 during summer. This nutrient concentration is high especially by comparing with those of unpolluted marine waters, but is typical of the more eutrophic coastal waters worldwide. The composition and abundance of phytoplankton with dominancy of diatoms and increased population density (20,986 cell l?1) reflect the eutrophic condition of the lake. The intensive growth of phytoplankton was enriched by high concentration of chlorophyll a with annual values ranged between 6.5 and 56?µg?l?1. The objective of the present work was quantitative assessment of the quality of the water of the Lake Timsah using different approaches. During the present study, three different approaches were applied for the quantitative assessment of Lake Timsah water quality: the trophic state index (TST); trophic level index (TLI) and water quality index (WQI). Application of the trophic state and trophic level indices (TSI & TLI) revealed that the Lake Timsah has trophic indices of 60 and 5.2 for TSI and TLI, respectively. Both indices reflected the eutrophic condition of the lake waters and confirmed that the eutrophication is a major threat in the Lake Timsah. On the other hand, the WQI calculated for the Lake Timsah during the present study with an average of 49 demonstrated that the water of the Lake Timsah is bad and unsuitable for main and/or several uses. Moreover, WQI allows accounting for several water resource uses and can serve a more robust than TSI and/or TLI and can be used effectively as a comprehensive tool for water quality quantification. In conclusion, the three subjective indices used for the assessment process for the lake water are more suitable and effective for needs of the sustainable water resources protection and management of the Lake Timsah.  相似文献   

16.
The intertidal and subtidal soft-sediment macrofauna of the upper Forth estuary, eastern Scotland, UK has been examined. The intertidal fauna was sampled in 1977, and again in 1988/89, at up to twelve stations along the salinity gradient. The subtidal fauna was sampled in 1982 and in 1988/89 at up to 15 stations. The stations span the region of the freshwater-seawater interface, and area of the turbidity maximum. Large spatial and temporal variations in macrofaunal abundance and species composition were observed. Sites at the head of the estuary with low salinity were dominated by oligochaetes, but more saline areas were characterised by a depauparate estuarine fauna. The area has historically received large quantities of organic waste both from sewage and industrial discharges which supported very high abundances of oligochaetes of up to 500,000 m−2 in the upper reaches of the estuary. Reductions in the organic inflow to the area since the early-1980's have begun to cause reductions in oligochaete populations and also allowed the further penetration intertidally of non-oligochaete species into the upper and middle reaches of the estuary. No comparable upstream penetration by the non-oligochaete subtidal fauna has been observed, possibly on account of the greater sediment instability in the estuary's main channel.  相似文献   

17.
External nutrient loading was reduced over the past decades as a measure for improving the water quality of eutrophic lakes in western Europe, and has since been accelerated by the adoption of the European Water Framework Directive (WFD) in 2000 (EC, 2000). A variety of eutrophication-related metrics have indicated that the response of biological communities to this decreased nutrient loading has been diverse. Phytoplankton, a major component of the pelagic community, often responded rapidly, whereas a significant delay was observed for submerged macrophytes colonizing littoral areas. In this study we tested whether assessment methods developed for phytoplankton and macrophytes in lakes during Germany's implementation of the WFD reflect this differential response. An assessment of 263 German lakes confirmed that a lower ecological state was recorded when based on the biological quality element (BQE) for macrophytes than the BQE for phytoplankton during the investigated period (2003–2012). On average, lakes had a moderate ecological status for both phytoplankton and macrophyte BQEs, but differences of up to three classes were observed in single cases. Long-term data were available for five lowland lakes subject to strong reductions in phosphorus loading. Their phytoplankton-based assessments indicated a constant improvement of the ecological status in parallel to decreasing water phosphorus concentrations. In contrast, macrophyte-based assessments indicated a 10–20 year delay in their ecological recovery following nutrient load reduction. This delay was confirmed by detailed data on the temporal development of macrophyte species diversity and maximum colonization depths of two lakes after nutrient load reduction. We conclude that the available WFD assessment methods for phytoplankton and macrophyte BQEs are suitable to track the differential response of pelagic and littoral areas to nutrient load reductions in German lakes.  相似文献   

18.
We studied the key environmental variables shaping plant assemblages in Mediterranean abandoned ricefields with contrasting freshwater inputs over saline sediments. Plant species cover, water levels and soil variables were studied following a stratified random sampling design. Multivariate analysis identified water regime, particularly summer and autumn irrigation, as the most important environmental variable associated with vegetation composition. Distribution of annual and emergent macrophytes was not associated to salinity as found at the study site (0.57–4.1 mS/cm). Increased soil salinity, caused by summer irrigation near the soil surface did affect shallow-marsh assemblage distribution. These key environmental characteristics allowed us to identify six main assemblages. Annual macrophytes (such as Zannichellia palustris) were defined by high (over 10 cm) annual mean water level (MWL) and early successional conditions; emergent macrophytes (such as Typha spp., Scirpus lacustris) by annual MWL of 10 to − 25 cm and continuous shallow flooding in summer and autumn (MWL of 0–10 cm). The shallow-marsh group, correlated with annual MWL − 25 to − 100 cm, separated into two subgroups by salinity: grassland (including Paspalum distichum) with summer and autumn MWL below − 25 cm and brackish (with Juncus subulatus or Agrostis stolonifera) with summer and autumn MWL just below the soil surface (0 to − 25 cm). Water levels for the grassland subgroup may equate with a salinity ‘refuge’ for P. distichum. Time was a further determinant of variation in the full data set. Abundance of a large group of agricultural annuals (such as Sonchus tenerrimus) and damp ground annuals (including ricefield weeds such as Ammania robusta) decreased with time as bare ground disappeared. Maintenance of spatial vegetation heterogeneity in abandoned ricefields is contingent on continued water regime management.  相似文献   

19.
Changes in water clarity (secchi disc transparency) in relation to the presence/absence of introduced, exotic fish, including rudd (Scardinius erythrophthalmus), tench (Tinca tinca), perch (Perca fluviatilis), brown bullhead catfish (Ameiurus nebulosus), goldfish (Carassius auratus), and koi carp (Cyprinus carpio) were determined for 49 small, North Island, New Zealand lakes. There was a negative association between water clarity and the presence of exotic fish independent of lake depth. Moreover, a ‘before-and-after’ comparison and examination of case-studies indicated that introductions of exotic fish reduce water clarity. The number of species introduced affected the relationship between lake depth and water clarity but the specific role of each species could not be distinguished because most of the lakes (83%) contained more than one exotic fish species. A model incorporating the known mechanisms by which planktivorous, benthivorous and herbivorous fish can influence water clarity in lakes showed that control over just one species or feeding guild may not result in an improvement in water clarity because of the additive and synergistic effects of different species on lake trophic processes. Handling editor J. Cambray  相似文献   

20.
The seasonal and spatial dynamics of two groups of macroalgae, drift algae and rhizophytes, commonly found in tropical seagrass meadows were studied. The aim of this study was to provide insight into how freshwater discharges may be altering seagrass-dominated nearshore tropical habitats. Species composition, biomass, and percent cover of macroalgae were collected at six Thalassia testudinum König dominated sites within Biscayne Bay, Florida, representing three salinity regimes: canal-influenced, natural sheet-flow, and oceanic conditions. Mean annual salinities in these three regimes correspond to 10, 25 and 35 psu, respectively, with much greater variability in the canal and sheet-flow regimes, than in the oceanic condition. There were distinct changes in the composition of the macroalgal community along this salinity gradient. Drift algae (Chondria spp., Laurencia spp.) were most commonly found at canal-disturbed sites (10–85 g m−2), while rhizophytic calcareous green algae (Halimeda spp., Penicillus spp.) were most abundant at the higher salinity oceanic sites (20–105 g m−2). Seasonal patterns exhibited by the two groups differed also, with drift algae being more abundant in the cooler dry-season months, while rhizophytic algae were more abundant during the warmer wet-season months. These periods of higher abundance correlated with higher growth rates (drift = 2.3% day−1, rhizophytes = 0.85% day−1) measured in representative species for each group. Grazing rates on drift algae were found to be low for tropical habitats and did not differ much between canal (0.44% h−1) and oceanic sites (0.42% h−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号