首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Changes in extractability and activity of hexokinase (HK) were studied under the action of heating and of urea on skeletal muscles of Rana temporaria L., and besides the stability of this enzyme in muscle extract to those agents in vitro was examined. Under a 15 minutes heating of muscle, a decrease in extractability (the activity calculated for 1 g of tissue) and activity (the activity calculated for 1 mg of protein) of hexokinase is first revealed at 37 degrees C. Then the enzyme extractability decreases gradually in accordance to the decrease in extractability of the total water-soluble protein; the level of hexokinase activity attained at 37 degrees does not change up to 40 degrees. At 42 degrees the activity of the enzyme is completely inhibited. Under the heating of the muscle extract, the decrease of enzyme activity takes place at 36 degrees, the level achieved being stable up to 42 degrees C. Under the action of urea on the muscle at the reversible phase of alteration (1 M urea from 5 minutes to 2 hours at room temperature, 1 M urea for 9 hours at + 4 degrees C), hexokinase activity increases, calculated for 1 g of tissue and for 1 mg of protein. Under the irreversible disappearance of muscle excitability (1 M urea during 9 hours, 2 M urea during 2 hours at room temperature) no hexokinase activity was revealed. The activation of the enzyme is discussed in connection with the data on the increase of ATP content in muscle under the urea alteration. The treatment of the enzyme in muscle extract with 1 M urea decreases its activity in 30 minutes down to 67%; the level achieved does not change during 20 hours.  相似文献   

6.
7.
8.
9.
The perfused rat liver responds in several ways to NAD+ infusion (20–100 μM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption and gluconeogenesis are some of the effects that were observed. Extracellular NAD+ is also extensively transformed in the liver. The purpose of the present work was to determine the main products of extracellular NAD+ transformation under various conditions and to investigate the possible contribution of these products for the metabolic effects of the parent compound. The experiments were done with the isolated perfused rat liver. The NAD+ transformation was monitored by HPLC. Confirming previous findings, the single-pass transformation of 100 μM NAD+ ranged between 75% at 1.5 min after starting infusion to 95% at 8 min. The most important products of single-pass NAD+ transformation appearing in the outflowing perfusate were nicotinamide, ADP-ribose, uric acid, and inosine. The relative proportions of these products presented some variations with the time after initiation of NAD+ infusion and the perfusion conditions, but ADP-ribose was always more abundant than uric acid and inosine. Cyclic ADP-ribose (cADP-ribose) as well as adenosine were not detected in the outflowing perfusate. The metabolic effects of ADP-ribose were essentially those already described for NAD+. These effects were sensitive to suramin (P2XY purinergic receptor antagonist) and insensitive to 3,7-dimethyl-1-(2-propargyl)-xanthine (A2 purinergic receptor antagonist). Inosine, a known purinergic A3 agonist, was also active on metabolism, but uric acid and nicotinamide were inactive. It was concluded that the metabolic and hemodynamic effects of extracellular NAD+ are caused mainly by interactions with purinergic receptors with a highly significant participation of its main transformation product ADP-ribose.  相似文献   

10.
Type II hexokinase (EC 2.7.1.1) has been purified from rat skeletal muscle by a simple procedure involving chromatography on DEAE-cellulose, affinity elution chromatography from phosphocellulose, and gel filtration on Sephadex G-200. The key to the preparation of homogeneous enzyme is the affinity elution step in which an effector molecule, glucose 6-phosphate, is used as the eluting ligand. A 5300-fold purification is obtained by the procedure and over 400-fold purification is obtained in the affinity elution step alone. Approximately 3.3 mg of homogeneous hexokinase with a specific activity of 120 units/mg is obtained from 800 g of rat limb.  相似文献   

11.
12.
13.
Yeast hexokinase mutants.   总被引:7,自引:0,他引:7  
Using yeast mutants, it is shown that growth on glucose occurs even in the absence of both hexokinase A and hexokinase B; fructose growth requires at least one of these two enzymes. Expression of hexokinase A and of glucokinase seem to be regulated.  相似文献   

14.
15.
16.
17.
The kinetic mechanism of rat skeletal muscle hexokinase (hexokinase II) was investigated in light of a proposal by Cornish-Bowden and his co-workers (Gregoriou, M., Trayer, I. P., and Cornish-Bowden, A. (1983) Eur. J. Biochem. 134, 283-288). These investigators reported that the kinetic mechanism is ordered, with glucose adding before ATP and ADP dissociating from hexokinase before glucose-6-P. In addition, these workers suggest that glucose-6-P and ATP add to allosteric sites on hexokinase. We investigated the mechanism of action of hexokinase II by studying initial rate kinetics in the nonphysiological direction and by isotope exchange at chemical equilibrium. The former experiments were carried out in the absence of inhibitors and then with AMP, which is a competitive inhibitor of ADP, and with glucose 1,6-bisphosphate, a competitive inhibitor of glucose-6-P. The findings from these experiments suggest that the kinetic mechanism is rapid equilibrium Random Bi Bi. Isotope exchange at equilibrium studies also supports the random nature of the muscle hexokinase reaction; however, they also suggest that the mechanism is partially ordered, i.e. there is a preferred pathway associated with the branched mechanism. Approximately two-thirds of the flux through the hexokinase reaction involves the glucose on first glucose-6-P off last branch of the Random Bi Bi mechanism. These results imply that the kinetic mechanism is steady state Random Bi Bi. There is some evidence to suggest that glucose-6-P binds to an allosteric site on muscle hexokinase, but none to suppose that ATP binds allosterically. Analysis of the mechanism of Gregoriou et al. suggests that it is at variance with the findings of this report as well as with data available from other laboratories.  相似文献   

18.
19.
20.
The hexokinase of boar spermatozoa.   总被引:1,自引:1,他引:0  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号