首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boulanger L  Girard N  Strecko J  Gaudreau P 《Peptides》2002,23(6):1187-1194
Receptor binding analysis was performed in the renal medulla from 2-month-old rats, an extrapituitary tissue containing the highest level of GHRH receptor mRNA. At 4 degrees C, in the presence of a cocktail of protease inhibitors, binding of [125I-Tyr(10)]hGHRH (1-44)NH(2) to medullary homogenates was specific, time-dependent, reversible and saturable (K(d): 28 nM; B(max): 30 fmol/mgprot.). In these experimental conditions, no change of binding parameters could be detected in the course of aging. The structure-affinity profile was different in the two tissues and chemical cross-linking revealed the presence of 65-, 55- and 38-kDa 125I-GHRH-labeled complexes in the renal medulla compared to 65-, 47- and 28-kDa radioactive complexes in the anterior pituitary. It is suggested that GHRH binding sites, and possibly the receptor, may be different in the two tissues.  相似文献   

2.
Brain (BNP) and atrial natriuretic peptides (ANP) have been identified which may represent endogenous agonists of kidney receptor subtypes. Quantitative in vitro autoradiography was used to investigate the regional distribution of receptor subpopulations and the competitive inhibition of 125I porcine BNP1-26 (pBNP1-26) and 125I rat alpha-ANP1-28 (rANP1-28) renal binding sites. Specific, high affinity binding (Kd 0.2-1.37 nM range) was localized to glomeruli, inner medulla, interlobar and arcuate arteries, vasa recta bundles, and smooth muscle in the renal pelvis. pBNP1-26 competed for the same sites as rANP1-28 but displayed a lower potency and was less selective for nonclearance sites. Clearance binding sites were discriminated by competitive inhibition with C-ANP4-23 and comprised some 65% of glomerular sites as well as the vast majority of sites in the renal pelvis. Nonclearance sites predominated in the inner medulla and intrarenal arteries. C-terminal changes in amino acid sequence induced a significant loss of inhibitory potency. Immunohistochemical studies identified a distinct population of BNP-like immunoreactive renal nerve fibers, associated with intra-renal arteries. Circulating natriuretic peptides and BNP sequences derived from renal nerves may influence renal function by interacting with specific receptor subpopulations in the kidney.  相似文献   

3.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

4.
Atrial natriuretic factor (ANF) is a peptide hormone from the heart atrium with potent natriuretic and vasorelaxant activities. The natriuretic activity of ANF is, in part, mediated through the adrenal gland, where binding of ANF to the 130-kDa ANF receptor causes suppression of aldosterone secretion. Incubation of bovine adrenal membranes at pH < 5.6 caused a rapid and spontaneous cleavage of the 130-kDa ANF receptor, yielding a 65-kDa polypeptide that could be detected by photoaffinity labeling by 125I-labeled N alpha 4-azidobenzoyl-ANF(4-28) followed by SDS/PAGE under reducing conditions. Within 20 min of incubation at pH 4.0, essentially all the 130-kDa receptor was converted to a 65-kDa ANF binding protein. This cleavage reaction was completely inhibited by inclusion of 5 mM EDTA. When SDS/PAGE was carried out under non-reducing conditions, the apparent size of the ANF receptor remained unchanged at 130 kDa, indicating that the 65-kDa ANF-binding fragment was still linked to the remaining part(s) of the receptor polypeptide through a disulfide bond(s). The disappearance of the 130-kDa receptor was accompanied by a parallel decrease in guanylate cyclase activity in the membranes. Inclusion of EDTA in the incubation not only prevented cleavage of the 130-kDa receptor, but also protected guanylate cyclase activity, indicating that proteolysis, but not the physical effects of the acidic pH, causes inactivation of guanylate cyclase. The 130-kDa ANF receptor in adrenal membranes was competitively protected from photoaffinity labeling by ANF(1-28) or ANF(4-28), but not by atriopeptin I [ANF(5-25)] or C-ANF [des-(18-22)-ANF(4-23)-NH2]. On the contrary, the 65-kDa ANF-binding fragment generated after incubation at pH 4.0 was protected from labeling by any of the above peptides, indicating broader binding specificity. After incubation in the presence of EDTA, the 130-kDa ANF receptor, which was protected from proteolysis, retained binding specificity identical to that of the 130-kDa receptor in untreated membranes. The results indicate that the broadening of selectivity is caused by cleavage, but not by the physical effect of acidic pH. Spontaneous proteolysis of ANF receptor by an endogenous metalloendopeptidase, occurring with concomitant inactivation of guanylate cyclase activity and broadening of ligand-binding selectivity, may be responsible for the generation of low-molecular-mass receptors found in the adrenal gland and other target organs of ANF. The proteolytic process may play a role in desensitization or down-regulation of the ANF receptor.  相似文献   

5.
In the present study, we determined that rat mononuclear leukocytes possess specific receptors for growth hormone releasing hormone (GHRH). The results show that the binding of 125I-labeled GHRH to spleen and thymic cells was saturable and of a high affinity, approximately 3.5 and 2.5 nM for thymus and spleen cells, respectively. The Scatchard analysis revealed a binding capacity of approximately 54 and 35 fmol per 10(6) cells on thymus and spleen, respectively. The binding of GHRH was not competed by 10(-6) M growth hormone, corticotropin releasing factor, substance P or luteinizing hormone releasing hormone and vasointestinal peptide (VIP). Partial characterization of the receptor was accomplished by crosslinking 125I-labeled GHRH to thymus cells with disuccinimidyl suberate and polyacrylamide gel electrophoresis. Autoradiography of dried gels showed two major components in leukocytes and pituitary cells at approximately 42 and 27 kDa which could be diminished by unlabeled GHRH. The treatment of leukocytes with GHRH (10 nM) rapidly increased the intracellular free calcium concentration from a basal level of 70 +/- 20 nM to a plateau value of 150 +/- 20 nM in 6 min after stimulation. The functional activity of GHRH receptors was studied further by measuring lymphocyte proliferative responses and the increase in the level of cytoplasmic GH RNA. The presence of GHRH alone resulted in a dose-dependent increase in thymidine and uridine incorporation and a dose-dependent increase in the levels of GH RNA in the cytoplasm. Taken together, the results show that lymphocytes contain specific receptors for GHRH that are coupled to important biological responses and further support the concept of bidirectional communication between the immune and neuroendocrine tissues.  相似文献   

6.
Disulfides of the lutropin receptor   总被引:1,自引:0,他引:1  
Affinity cross-linking of the lutropin receptor with 125I-human choriogonadotropin (hCG) on porcine granulosa cells produced four distinct homone-receptor complexes under reducing conditions. They contain 18-, 24-, 28-, and 34-kDa components (Ji, I., Bock, J. H., and Ji, T. H. (1985) J. Biol. Chem. 260, 12815-12821). Photoaffinity labeling and cross-linking produced 136-, 102-, and 74-kDa hCG-receptor complexes under reducing conditions and the 136-kDa complex under nonreducing conditions. In addition, the unreduced 102-kDa complex was seen in photoaffinity labeling but not in cross-linking. When the unreduced 136-kDa complex was reduced, the 102- and 74-kDa complexes were generated, indicating release of the 34- and the 28-kDa components in two steps. When the unreduced 102-kDa complex was reduced, the 74-kDa complex was produced, indicating the release of a 28-kDa component. The 74-kDa complex could not be reduced but was cleaved by alkaline treatment to produce the hCG alpha beta dimer. The results indicate that the 24-kDa component is released from the 74-kDa complex, since the apparent mass of the hCG alpha beta dimer on gels is 50 kDa. The 24-kDa component appears to be the initial site for photoaffinity labeling or cross-linking and to be disulfide linked to the 28-kDa component which is in turn disulfide linked to the 34-kDa component. These intercomponent disulfides exist in some receptors but not all. Formation of the disulfide-linked 136-kDa band required the presence of a sulfhydryl-blocking agent, N-ethylmaleimide. In particular, the 34-kDa component was vulnerable to reduction. There was no significant evidence of disulfides between the hormone and any of the receptor components.  相似文献   

7.
We have previously shown that the antireceptor antibody alpha IR-3 inhibits binding of 125I-somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) to the 130-kDa alpha subunit of the type I receptor in human placental membranes, but does not block 125I-insulin-like growth factor II (IGF-II) binding to a similar 130-kDa complex in these membranes. To determine whether the 130-kDa 125I-IGF-II binding complex represents a homologous receptor or whether 125I-IGF-II binds to the type I receptor at a site that is not blocked by alpha IR-3, type I receptors were purified by affinity chromatography on Sepharose linked alpha IR-3. The purified receptors bound both 125I-Sm-C/IGF-I and 125I-IGF-II avidly (KD = 2.0 X 10(-10) M and 3.0 X 10(-10) M, respectively). The maximal inhibition of 125I-Sm-C/IGF-I binding by the antibody, however, was 62% while only 15% of 125I-IGF-II binding was inhibited by alpha IR-3. In the presence of 500 nM alpha IR-3, Sm-C/IGF-I bound with lower affinity (KD = 6.5 X 10(-10) M) than IGF-II (KD = 4.5 X 10(-10) M) and IGF-II was the more potent inhibitor of 125I-Sm-C/IGF-I binding. These findings suggest that the type I receptor contains two different binding sites. The site designated IA has highest affinity for Sm-C/IGF-I and is blocked by alpha IR-3. Site IB has higher affinity for IGF-II than for Sm-C/IGF-I and is not blocked by alpha IR-3.  相似文献   

8.
Incubation of hepatocytes from pregnant rats with dithiothreitol decreased specific 125I-prolactin (125I-prl) binding to such cells by about 20% relative to control. This was not due to a non-specific effect of dithiothreitol on the cell membrane, since reduction also altered the binding of prl to solubilized partially purified receptor. Exposure of hepatocytes to N-ethylmaleimide (6 mM) for periods as brief as 1 min decreased the subsequent specific binding of 125I-prl by more than 50%. N-Ethylmaleimide was less effective as an inhibitor of binding when applied after hepatocytes had been exposed to 125I-prl, binding being decreased by about 15%. Scatchard analysis demonstrated that the effect of N-ethylmaleimide resulted from loss of receptor-binding capacity without any substantial effect on the affinity of the prl receptor for hormone. Dithiothreitol diminished the affinity of lactogenic sites for prolactin without altering cellular binding capacity. These observations suggest that thiol and disulphide groups are present in the prl receptor and that these functional moieties regulate the formation and properties of prl receptor complexes. The species to which 125I-prl had bound were identified by affinity labelling. 125I-prl was covalently coupled into saturable complexes of Mr 65000 and 50000. 125I-human growth hormone (125I-hGH) was covalently incorporated into complexes of Mr 300 000, 220 000, 130 000, 65 000 and 50 000. Bovine growth hormone (bGH), but not prl, competed for 125I-hGH uptake into the 300 000-, 220 000- and 130 000-Mr complexes, indicating that these species were somatogenic. Prl, but not bGH, inhibited 125I-hGH uptake into 65 000- and 50 000-Mr complexes. This demonstrated that 125I-hGH in the presence of bGH could affinity-label lactogenic receptors. 125I-prl aggregates in Triton X-100, whereas 125I-hGH does not. Therefore lactogenic complexes to which 125I-hGH was bound in the presence of excess bGH were solubilized in Triton X-100 and characterized sequentially by gel filtration and affinity labelling. Prl receptors were eluted from columns of Sepharose 6B as a species of Mr380 000. Fractionation of the 380 000-Mr species on sodium dodecyl sulphate polyacrylamide gels resulted in the isolation of complexes of Mr 65 000 and 50 000. Thus non-covalent forces stabilize aggregates of the monomeric prolactin receptor.  相似文献   

9.
beta-Adrenergic receptor subtypes, beta 1 and beta 2, were studied during pre- and postnatal development in the rat brain. [125I]Iodocyanopindolol (6-300 pmol/L) binding assays in the presence of 5-hydroxytryptamine (0.6-6 mumol/L) were used to measure exclusively beta-adrenergic receptors. In forebrain tissue, saturable and stereoselective binding was detected on gestational day 13. The amount of beta-adrenergic binding increased until postnatal day 23, when adult values were reached. The dissociation constants of [125I]iodocyanopindolol binding remained the same throughout development, as did the affinity of several beta-adrenergic and non-beta-adrenergic compounds. The proportion of the beta 2-adrenergic receptors was determined using the beta 1-selective antagonist ICI-89406 (7-150 nmol/L) and was found to change from 65% in prenatal forebrain tissue to 28% in adulthood. In cerebellum/medulla pons tissue, however, the proportion of beta 2-receptor binding (80%) remained unchanged during the whole developmental period.  相似文献   

10.
We have investigated the binding characteristics of rat [125I] adrenomedullin (AM) and human [125I] calcitonin gene-related peptide (CGRP) to membranes prepared from a number of porcine tissues including atrium, ventricle, lung, spleen, liver, renal cortex and medulla. These membranes displayed specific, high affinity binding for [125I] rat AM and [125I] human CGRP. Porcine lung displayed the highest density of binding sites for radiolabeled AM and CGRP followed by porcine renal cortex. Competition experiments performed with [125I] rat AM indicated that the rank order of potencies of various peptides for inhibiting [125I] rat AM binding to various tissues were rat AM > or = human AM > or = human AM(22-52) > h alpha CGRP > or = h alpha CGRP(8-37) > sCT except spleen, atrium, renal cortex and renal medulla where rAM and hAM were 20-300 fold more potent than hAM (22-52). When the same experiments were performed using [125I] h alpha CGRP as the radioligand, the rank order potencies for various peptides were rAM = hAM > h alpha CGRP > h alpha CGRP(8-37) in most of the tissues except in spleen and liver where h alpha CGRP was the most potent ligand. In lung, h alpha CGRP was almost as potent as rAM and hAM in displacing [125I] h alpha CGRP binding. These data suggest the existence of distinct CGRP and AM specific binding sites in contrast to previous reports that showed that both peptides interact differently in rat tissues.  相似文献   

11.
Radioiodinated human choriogonadotropin was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to the hormone receptor on porcine granulosa cells and the solubilized sample was electrophoresed. Cross-linked samples revealed four additional bands of slower electrophoretic mobility in addition to the hormone alpha, beta, and alpha beta dimer bands. The four bands corresponded to masses of 68, 74, 102, and 136 kDa whereas the alpha beta dimer band corresponded to 50 kDa. Formation of the four bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding can be prevented by excess of native hormone but not by follitropin. A monofunctional analog of the cross-linking reagent failed to produce the four bands. They were also produced by cross-linking Triton X-100-solubilized hormone-receptor complexes. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of the cross-linked sample were treated with reagents that cleave covalent cross-links and then electrophoresed in a second dimension gel, 18-, 24-, 28-, and 34-kDa components were released, in addition to the alpha and beta subunits of the native hormone. Simultaneous peptide mapping of the cross-linked complexes in the gel matrix with Staphylococcus V8 protease or papain revealed progressive proteolysis to generate terminal fragments of 30 or 27 kDa, respectively. These fragments were unique to and commonly present in the 74-, 102-, and 136-kDa hormone-receptor complexes but were not produced by proteolysis of the cross-linked human choriogonadotropin (hCG) alpha beta dimer or the hCG alpha subunit. Apparently, the radioactively labeled segment(s) of the alpha subunit of 125I-hCG was cross-linked to the 24-kDa component. The results demonstrate the protein nature of the receptor and suggest that 125I-hCG was initially cross-linked to the 24-kDa component to generate the 74-kDa complex, then the 28- and 34-kDa components were sequentially cross-linked to the 24-kDa component in the 74-kDa complex to generate the 102- and 134-kDa complexes.  相似文献   

12.
Recombinant human single-chain urokinase (rscu-PA), two-chain urokinase (tcu-PA), and diisopropyl-fluorophosphate-treated tcu-PA (DFP-tcu-PA) bound to cultured human and porcine endothelial cells in a rapid, saturable, dose-dependent and reversible manner. Analysis of specific binding results in cultured human umbilical vein endothelial cells (HUVECs) gave the following estimated values for Kd and Bmax: 0.57 +/- 0.08 nM (mean +/- S.E.) and 188,000 +/- 18,000 sites/cell for 125I-labeled rscu-PA; 0.54 +/- 0.10 nM and 132,000 +/- 23,900 sites/cells for 125I-labeled tcu-PA; 0.89 +/- 0.14 nM and 143,000 +/- 30,300 sites/cell for 125I-labeled DFP-tcu-PA, respectively. Values for Kd were similar for primary and subcultured (six passages) HUVECs, but Bmax values were lower in subcultured HUVECs. Similar Kd values were found in cultured porcine endothelial cells; however, Bmax values varied depending on the endothelial cell type. All 125I-labeled urokinase forms yielded similar cross-linked approximately 110-kDa ligand-receptor complexes with cultured HUVECs, and 125I-labeled DFP-tcu-PA bound to a single major approximately 55-kDa protein in whole-cell lysates (ligand blotting/autoradiography), suggesting the presence of a single major approximately 55-kDa urokinase receptor in cultured HUVECs. The approximately 55-kDa urokinase receptor, isolated from several separate batches of cultured HUVECs (3-5 micrograms of protein, approximately 1 x 10(9) cells), by ligand affinity chromatography, exhibited the following properties: retained biologic activity as evidenced by its ability to bind 125I-labeled rscu-PA by ligand blotting/autoradiography and formation of a cross-linked 125I-labeled approximately 110-kDa rscu-PA-receptor complex; single-chain approximately 55-kDa protein, following reduction; complete conversion to and formation of a single major deglycosylated approximately 35-kDa protein, following treatment with N-glycanase.  相似文献   

13.
The interaction between human interferon (IFN)-α or IFN-β with its receptor was originally described as the binding to a single class of high-affinity receptors. However, more recently, biphasic Scatchard plots as well as multiple IFN-α receptor cross-linked complexes have been reported. In this study using the Daudi B lymphoblastoid cell line, two primary IFN-α receptor cross-linked complexes with apparent Mr of 115 and 135 kilodaltons (kDa) were obtained. Both complexes were observed under a variety of cross-linking conditions, including the addition of a mixture of protease inhibitors throughout the binding reaction and solubilization of the cells. These two complexes appear to be caused by the binding and cross-linking of 125I-rIFN-αA to two separate proteins because we also observed two IFN-α binding proteins using a ligand-blotting technique. At low concentrations of 125I-rIFN-αA, it was found that the intensity of the signal in the 135-kDa cross-linked complex was greater than that of the 115-kDa complex. Addition of increasing concentrations of unlabeled rIFN-αA to a 4°C binding reaction reversed the ratio in intensities of the two complexes. Moreover, after pretreatment of the cells at 37°C with low concentrations of unlabeled rIFN-αA, there was preferential down-regulation of both the 135-kDa complex and the higher affinity binding component of the biphasic Scatchard plot. These results suggest that the 135-kDa complex represents the binding of 125I-rIFN-αA to a protein having higher affinity for IFN than the protein that gives rise to the 115-kDa complex. These two proteins also appear to have different half lives in the plasma membrane in the absence of IFN because treatment with cycloheximide also caused a preferential decrease in the subsequent formation of the 135-kDa complex.  相似文献   

14.
The interaction of interferon-gamma (IFN gamma) (a product of activated T lymphocytes) and monocytes is essential for immune responsiveness, host defense, and chronic inflammation. In this report we define the IFN gamma receptor (IFN gamma R) on human monocytes as a receptor complex consisting of at least three subunits. Solubilization and immunoprecipitation of [35S]methionine- and [35S]cysteine-labeled monocytes were optimized by controlling the detergent concentration during solubilization and washing of the immunoprecipitates. This enabled subunits to be coimmunoprecipitated by several different anti-IFN gamma R antibodies raised against the 90-kDa cloned binding protein. Immunoprecipitation under stringent (1% sodium dodecyl sulfate) conditions resulted in the visualization of only the 80-90-kDa binding protein. Under less stringent conditions at least two coimmunoprecipitated subunits (molecular mass of 200 and 38 kDa) were consistently associated with the 80-kDa (90-92 kDa reduced) binding protein. The 38-kDa subunit was shown to be distinct from the 80-kDa subunit by proteolytic fragment analysis. Cross-linking of 125I-rIFN gamma to monocytes yielded receptor-IFN gamma complexes consistent with the existence of multiple subunits.  相似文献   

15.
Moulik S  Speth RC  Rowe BP 《Life sciences》2000,66(16):PL233-PL237
In vitro receptor autoradiography was performed on rat brain and kidney sections stored frozen at -20 degrees C for extended time periods (17, 40, 64, 121, 183, 251, and 333 days). The results indicate that prolonged tissue storage has a differential effect upon 125I sar1ile8 angiotensin II binding to AT1 and AT2 receptor sites. Binding at AT1 receptor rich tissues studied (renal medulla, renal cortex, anterior pituitary, ventral hippocampus, spinal trigeminal nucleus, and nucleus of the solitary tract) shows a first order exponential decay pattern. The logarithmic linear regression slope (log(e) specific binding versus time), is significantly different from zero (p<0.05) in all AT1 rich tissues except for nucleus of the solitary tract (p=0.086). There is no detected loss of 125I sar1ile8 angiotensin II binding at the AT2 prominent regions in the superior colliculus, medial geniculate nucleus, and the inferior olivary nucleus. The half lives of AT1 receptors are highly variable, ranging from 36 days in the anterior pituitary to 442 days in the nucleus of the solitary tract, and this might be related to variable stability of AT1A and AT1B receptors. These observations should be taken into account when assessing and comparing AT1 and AT2 receptor subtype densities.  相似文献   

16.
Handa RK 《Peptides》2002,23(10):1847-1852
Aldehyde fixatives are often used to preserve tissue morphology and thereby aid in the identification of cellular structures expressing a target of interest. However, the effect of fixatives on target detection methods is unpredictable and it is currently unknown whether tissue fixation would allow the accurate detection of angiotensin AT(4) receptors in the kidney. In vitro receptor autoradiography on tissues fixed with 4% paraformaldehyde and 0.5% glutaraldehyde (+/-20% sucrose) had differing effects on the density of (125)I-AT(4) receptor ligand binding without affecting the tissue distribution of ligand binding in the rat and mouse kidney, whereas an increased expression of specific (125)I-AT(4) receptor ligand binding was found in the medulla region of the rabbit kidney. In contrast, such tissue fixation conditions dramatically decreased the renal binding of (125)I-angiotensin II receptor ligands, and altered the distribution of such ligand binding, in all three species. These results suggest that the method of tissue fixation and processing should be used cautiously in angiotensin receptor density measurements but can provide an accurate representation of kidney AT(4) receptor distribution only in the rat and mouse.  相似文献   

17.
Characterization of the receptors for vascular endothelial growth factor   总被引:31,自引:0,他引:31  
Vascular endothelial growth factor (vEGF) is a recently discovered mitogen for endothelial cells. It is also a potent angiogenic factor. We have characterized the vEGF receptors of endothelial cells using both binding and cross-linking techniques. Scatchard analysis of equilibrium binding experiments revealed two types of high-affinity binding sites on the cell surfaces of bovine endothelial cells. One of the sites has a dissociation constant of 10(-12) M and is present at a density of 3 x 10(3) receptors/cell. The other has a dissociation constant of 10(-11) M, with 4 x 10(4) receptors/cell. A high molecular weight complex containing 125I-vEGF is formed when 125I-vEGF is cross-linked to bovine endothelial cells. This complex has an apparent molecular mass of 225 kDa. Two other faintly labeled complexes with apparent molecular masses of 170 and 195 kDa also are detected. Reduction in the presence of dithiothreitol causes a substantial increase in the labeling intensity of the 170- and 195-kDa complexes, suggesting that these complexes are derived from the 225-kDa complex by reduction of disulfide bonds. The labeling of the vEGF receptors was inhibited by an excess of unlabeled vEGF but not by high concentrations of several other growth factors. Suramin and protamine, as well as several species of lectins, inhibited the binding. The expression of functional vEGF receptors was inhibited when the cells were preincubated with tunicamycin, indicating that glycosylation of the receptor is important for the expression of functional vEGF receptors. Pretreatment with swainsonine on the other hand, did not prevent formation of functional receptors. However, the mass of the 225-kDa complex is decreased by 20 kDa when 125I-vEGF is cross-linked to swainsonine-treated endothelial cells.  相似文献   

18.
19.
The receptor for vasoactive intestinal peptide (VIP) was identified in rat liver plasma membranes after covalent cross-linking to 125I-VIP by three different agents [disuccinimido dithiobis(propionate), disuccinimido suberate, and succinimido 4-azidobenzoate] and examined by sodium dodecyl sulfate-acrylamide electrophoresis. Regardless of the presence of reducing conditions, two molecular species of the putative VIP binding unit were identified as broad autoradiographic bands of 80,000 and 56,000 daltons (Da). Both the large and small species showed the same high affinity for 125I-VIP binding and subsequent cross-linking (half-maximal inhibition at 3 nM unlabeled VIP). The 80-kDa species was partially converted to the 56-kDa form by denaturing conditions and was extensively degraded when incubated at 20 degrees C for 30 min with 1 microgram/mL chymotrypsin, trypsin, or elastase to fragments that that migrated similarly to the 56-kDa unit. In contrast, the 56-kDa moiety was resistant to attack by serine proteases. Both the 80- and 56-kDa species were microheterogeneous due at least in part to the presence of carbohydrate chains, each species binding fractionally to wheat germ agglutinin (WGA)-agarose (approximately 50%). The WGA-bound fraction (eluted with N-acetylglucosamine) was relatively retarded on acrylamide gels as compared to the WGA-unbound fraction. Exposure of the 80- and 56-kDa species to endo-beta-acetylglucosaminidase F reduced the apparent molecular mass of each by 19 kDa, indicating the presence of complex N-linked carbohydrate chains. The receptor species do not appear to have high-mannose N-linked chains since they did not interact with concanavalin A and were not cleaved by endo-beta-acetylglucosaminidase H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cross-linking experiments using the (125)I-beta-endorphin revealed the presence of several receptor-related species in cell lines expressing endogenous opioid receptors, including a small molecular mass protein (approximately 22 kDa). Previous reports have suggested that this 22-kDa (125)I-beta-endorphin cross-linked protein could be the degradative product from a higher molecular mass species, i.e., a fragment of the receptor. To determine if this protein is indeed a degraded receptor fragment, (125)I-beta-endorphin was cross-linked to the (His)(6) epitope-tagged mu-opioid receptor (His-mu) stably expressed in the murine neuroblastoma Neuro(2A) cells. Similar to earlier reports with cell lines expressing endogenous receptors, two major bands of 72- and 25-kDa proteins were specifically cross-linked. Initial cross-linking experiments indicated the absolute requirement of the high-affinity (125)I-beta-endorphin binding to the mu-opioid receptor prior to the appearance of the low molecular weight species, suggesting that the 22-kDa protein could be a degraded fragment of the receptor. However, variations in the ratios of these protein bands being cross-linked by several homo- or heterobifunctional cross-linking agents were observed. Although neither the carboxyl terminus mu-opioid receptor-specific antibodies nor the antibodies against the epitope at the amino terminus of the receptor could recognize the 22-kDa protein, this (125)I-beta-endorphin cross-linked species could be coimmunoprecipitated with the receptor antibodies or could be isolated with a nickel resin affinity chromatography. The direct physical association of the 22-kDa protein with the receptor was demonstrated also by the observation that the 22-kDa protein could not bind to the nickel resin alone, but that its binding to the nickel resin was restored in the presence of the His-mu. Taken together, these results suggest that the 22-kDa protein cross-linked by (125)I-beta-endorphin is not a degradative product, but a protein located within the proximity of the mu-opioid receptor, and that it is tightly associated with the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号