首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acquisition of both active and passive avoidance response, the extinction of the former and the retention of the long-term memory trace of the latter were studied in 30- and 90-day-old male rats of the Wistar strain. The rats were in 3 groups which had had a different history between 15 and 30 days of age: (1) normally weaned rats lived from birth in a cage together with mother and siblings, i.e. under usual laboratory breeding conditions; (2) prematurely weaned rats lived under the same conditions for the first 15 days; after this period, their mother was removed from the cage; (3) community-reared rats had the same history up to 15 days of age; then they began to live in a community (5 connected cages) in contact with both young and adult rats from other cages. Ninety- day-old male rats acquired an active avoidance response at the same rate irrespective of their history in youth but 30-day-old rats were relatively slower if they had been prematurely weaned. Among both normally and prematurely weaned 30-day-old rats, the extinction was slower than in community-reared rats of the same age. Passive avoidance response was acquired by all rats at the same rate irrespective of their history and age. The long- term memory trace was always more stable in adult rats than in young ones.  相似文献   

2.
A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medullapons or the cerebellum. Since G4 forms have been proposed to be present presynaptically, their age-related loss in those brain areas where acetylcholine plays an important role in neurotransmission may indicate an impairment of presynaptic mechanisms.  相似文献   

3.
The changes in blood flow through selected brain structures and the changes in the total RNA content of cells of these structures were examined after a single administration of yeast RNA to 6-month-old male rats. The total content of ribosomal RNA in cells of the limbic system (septum, hippocampus, hypothalamus) increased 48 hrs after the administration of 100 mg i.p. yeast RNA , dropped after 7 days (in hypothalamus), 21 and 30 days (in hippocampus), 30 days (in septum). In cells of the limbic system as a whole there is a higher total RNA content in experimental rats. No changes were observed in the cells of parietal brain cortex. Blood flow increased in limbic structures 21 and 30 days after RNA administration and in septum and in hippocampus also 90 days after application. No changes were observed in parietal brain cortex, bulbi olfactorii, cerebellum and brain stem. Histochemical changes correlated positively with blood flow changes in the limbic system 14, 21, 30 and 90 days after RNA application. The body weight of experimental rats did not differ from that of control animals. The changes in haemodynamic parameters were transient and were demonstrated as fluctuations in heart rate, cardiac output, and peripheral resistance. Blood pressure experienced no changes.  相似文献   

4.
The effects of aging on in vivo DNA and RNA labeling and on RNA content in various brain regions of 4-, 12-, and 24-month-old rats were investigated. No difference in [methyl-14C]thymidine incorporation into DNA of cerebral cortex and cerebelllum during aging was observed.The ratio of RNA/DNA content significantly decreased from 4 to 24 months of age in cerebral cortex, cerebellum and striatum. RNA labeling decreased by 15% in cerebral cortex of 24-month-old animals while in the other brain areas examined (cerebellum, hippocampus, hypothalamus, brainstem, striatum) did not change during aging.In the cerebral cortex, the ratio of the specific radioactivity of microsomal RNA to that of nuclear RNA, determined by in vivo experiments, was not affected by the aging process. A significant decrease of total, poly(A)+ RNA and poly(A)- RNA content was observed in the same brain area of 24-month-old rats compared to 4-month-old ones. Moreover, densitometric and radioactivity patterns obtained by gel electrophoresis of labeled RNA after in vitro experiments (tissue slices of cerebral cortex) showed a different ribosomal RNA processing during aging. In vivo chronic treatment with CDP-choline was able to increase RNA labeling in corpus striatum of 24-month-old animals.  相似文献   

5.
The activities of RNA polymerase I and II were assayed in nuclei isolated from different regions (cerebral cortex, cerebellum, hypothalamus, hippocampus, corpus striatum and pituitary) of brains from young (10 days), adult (6 months), and old (2 years) rats. The RNA polymerases I and II activities generally increased during maturation, i.e., from 10 days to 6 months of postnatal age and then showed a decrease from 6 months to 2 years of age in all the regions except in cerebral cortex where the RNA polymerase II activity was highest at 10 days but showed a gradual decrease through the lifespan up to 2 years.  相似文献   

6.
I Sabell  P Morata  J Quesada  M Morell 《Enzyme》1987,37(4):169-173
Glycolytic metabolism has been assessed by studying a set of key enzymes, in anterior cortex, amygdala, hypothalamus septum and hippocampus, in thyroidectomized rats. The reversibility of the changes induced by the thyroidectomy has been assessed by replacement therapy. In thyroidectomized rats the hexokinase activity was significantly decreased in anterior cortex and hypothalamus. The increase in phosphofructokinase and pyruvate kinase activity was probably due to an increase in cellular energy requirements. Hexokinase activity was best restored by treatment with L-thyroxine (T4) or T4+ propylthiouracil (PTU). The low response of pyruvate kinase activity in all treated animals could suggest that this metabolic step is the least reversible.  相似文献   

7.
The dependent GDH-NADPH activity in adenohypophysis and other cerebral areas, has been studied in hypothyroid rats, in which hypothyroidism has been induced surgically. After thyroidectomy a decrease of GDH activity in limbic system (amygdala, septum and hippocampus), and an increase of this enzyme in cortex and hypothalamus have been found, with no changes in adenohypophysis. The alterations of GDH activity, induced by thyroidectomy, have been corrected, although not uniformly in the different brain areas after L-T3 treatment.  相似文献   

8.
The authors studied the effect of short-term (20 min) hypobaric hypoxia at simulated altitudes of 7000 and 9000 m on the peroxidation of lipids in the cerebral cortex, subcortical formations, medulla oblongata and cerebellum of the laboratory rat. In 5- and 21-day-old rats, increased lipoperoxidation was recorded in all the studied regions of the brain. Differences were observed in sensitivity to the degree of hypoxia. In 5-day-old rats the response to both exposures was the same, but in 21-day-old animals exposure at 7000 m stimulated peroxidation in the cerebral cortex only (at 9000 m in all the parts of the CNS examined). In 35-day-old and adult rats, changes in the malondialdehyde concentration were likewise found after exposure at 9000 m, but not in every compartment (in 35-day-old rats in the cerebral cortex and subcortical formations and in adult rats in the cerebral cortex). In young rats, 30 and 60 min after exposure to hypoxia the malondialdehyde concentration was still higher than in older animals.  相似文献   

9.
The influence of midantan in bioelectrical activity of sensomotor cortex, dorsal hippocampus and lateral hypothalamus in the rats in free behavior in wakefulness condition was studied. It was established that midantan influenced the cortex in two phases. In hippocampus there was an increase in absolute power of dominant theta-diapason.  相似文献   

10.
Ingestion of ammonium induces hyperammonemia which increases tubulin content in cerebrum but not in cerebellum. We have dissected 11 discrete areas of cerebrum and quantified the tubulin content in control and hyperammonemic rats. An heterogeneity in the induction of tubulin is shown. The areas more affected are ventral hippocampus, dorsal hippocampus, hypothalamus, septum, reticular formation and frontal cortex, in which tubulin content increased by 63%, 27%, 32%, 48%, 45%, and 25%, respectively, after two months of feeding the ammonium diet.  相似文献   

11.
Simultaneous recording of the EEG activity of superficial cortical and deep (caudate nucleus, dorsal hippocampus, anterior hypothalamus) brain parts has been performed for the first time after a 2-h swinging of frequency of 0.2 Hz in Wistar rats of juvenile age. Swinging was produced on a 4-bar parallel swing. Using a Neuron-Spectr electroencephalograph and a Diana program, normalized power spectra of wave EEG components, synchronization coefficients, and coefficients of cross-correlation between bioelectrical potentials of various brain structures were determined. After a 2-h swinging, the mean value of normalized power of slow waves of delta-diapason in hypothalamus and hippocampus was found to increase statistically significantly, while normalized power of fast waves of alpha- and beta1-diapasons in hippocampus decreased (p < 0.05). A statistically significant increase of synchronization coefficient was observed in hypothalamus and hippocampus. Changes of coefficients of cross-correlation between hypothalamus and hippocampus and other brain strictures were of the oppositely directed, individual character. In the parietal occipital brain cortex and in caudate nucleus, the changes of the EEG spectral composition also were of individual character. The obtained results on the whole correspond to data about an enhancement of the EEG low-frequency rhythms at swinging and agree with the resonance hypothesis of motion sickness.  相似文献   

12.
Simultaneous recording of the EEG activity of superficial cortical and deep (caudate nucleus, dorsal hippocampus, anterior hypothalamus) brain parts has been performed for the first time after a 2-h swinging of frequency of 0.2 Hz in Wistar rats of juvenile age. Swinging was produced on a 4-bar parallel swing. Using a Neuron-Spectre electroencephalograph and a Diana program, normalized power spectra of wave EEG components, synchronization coefficients, and coefficients of cross-correlation between bioelectrical potentials of various brain structures were determined. After a 2-h swinging, the mean value of normalized power of slow waves of δ-diapason in hypothalamus and hippocampus was found to increase statistically significantly, while normalized power of fast waves of α-and β1-diapasons in hippocampus decreased (p < 0.05). A statistically significant increase of synchronization coefficient was observed in hypothalamus and hippocampus. Changes of coefficients of cross-correlation between hypothalamus and hippocampus and other brain strictures were of the oppositely directed, individual character. In the parietal occipital brain cortex and in caudate nucleus, the changes of the EEG spectral composition also were of individual character. The obtained results on the whole correspond to data about an enhancement of the EEG low-frequency rhythms at swinging and agree with the resonance hypothesis of motion sickness.  相似文献   

13.
Neurochemical gender-specific effects have been observed following chronic stress. The aim of this study was to verify the effects of chronic variable stress on free radical production (evaluated by DCF test), lipoperoxidation (evaluated by TBARS levels), and total antioxidant reactivity (TAR) in three distinct structures of brain: hippocampus, cerebral cortex and hypothalamus of female rats, and to evaluate whether the replacement with estradiol in female rats exerts neuroprotection against oxidative stress. Results demonstrate that chronic stress had a structure-specific effect upon lipid peroxidation, since TBARS increased in hypothalamus homogenates of stressed animals, without alterations in the other structures analyzed. Estradiol replacement was able to counteract this effect. In hippocampus, estradiol induced a significant increase in TAR. No differences in DCF levels were observed. In conclusion, the hypothalamus is more susceptible to oxidative stress in female rats submitted to chronic variable stress, and this effect is prevented by estradiol treatment.  相似文献   

14.
15.
The enzymatic activities of two "key" enzymes of the glycolytic pathway, pyruvate kinase and lactic dehydrogenase, were studied in seven areas of the brain in male adult rats in states of pharmacologically induced hyper and hypothyroidism. The brain areas were: anterior cortex, adenohypophysis, hypothalamus, amygdaline nucleus, septum, hippocampus and cerebellum. In T3 treated animals, pyruvate kinase activity showed significant increase in all the areas studied while lactic dehydrogenase activity decreased. In propyl-thiouracil treated animals these enzyme activities showed no significant variations from those in animals of the control group.  相似文献   

16.
Poly(ADP-ribose) polymerase (PARP) is a conserved enzyme involved in the regulation of DNA repair and genome stability. The role of PARP during aging is not well known. In this study PARP activity was investigated in nuclear fractions from hippocampus, cerebellum, and cerebral cortex of adult (4 months), old adult (14 months) and aged (24-27 months) rats. Concomitantly, the free radical evoked lipid peroxidation was estimated as thiobarbituric acid reactive substances (TBARS). The specific activity of PARP in adult brain was about 25, 21 and 16 pmol/mg protein per min in hippocampus, cerebellum and cerebral cortex, respectively. The enzyme activity was higher in all investigated parts of the brain of old adults. In aged animals PARP activity was lower in hippocampus by about 50%, and was unchanged in cerebral cortex and in cerebellum comparing to adult rats. The concentration of TBARS was the same in all parts of the brain and remained unchanged during aging. There is no direct correlation between PARP activity and free radical evoked lipid peroxidation during brain aging. The lowered enzyme activity in aged hippocampus may decrease DNA repair capacity which subsequently may be responsible for the higher vulnerability of hippocampal neurons to different toxic insults.  相似文献   

17.
Specific cytosolic binding for synthetic glucocorticoid dexamethasone was studied in several brain regions (hypothalamus, hippocampus, caudate nucleus, cerebellum, cerebral cortex) of immature (3-week) and mature (26-week) male rats, intact and adrenalectomized. A significant regional difference was observed in the concentration of in vitro [3H] dexamethasone binding in the brain of adrenalectomized rats at both ages, with the highest levels in the hippocampus. A marked decrease in specific binding was observed in all brain regions of adrenalectomized mature rats as compared to immature. The dexamethasone binding was significantly lower in all brain regions of normal intact animals as compared to adrenalectomized rats in both ages.  相似文献   

18.
The effect of castration on the levels of brain monoamines and their metabolites has been investigated in rats which became or did not become muricidal following long-term isolation. Fourteen brain areas were explored: olfactory bulbs (OB), olfactory tubercles (OT), septum (Se), striatum (Sr), amygdala (A), thalamus (Th), hypothalamus (Hy), hippocampus (Hi), superior colliculus (SC), inferior colliculus (IC), raphe (Ra), pons-medulla (PM), frontal cortex (FC), temporal cortex (TC) and parietal cortex (PC). Except in the raphe of non muricidal rats and in the striatum of muricidal animals, all other areas examined demonstrate some changes of monoamines neurotransmitter or their metabolites after castration. The strongest changes, always increases, were found in the thalamus. In several brain areas, the changes occurring after castration, differ quantitatively and qualitatively in muricidal and non-muricidal rats.Special issue dedicated to Dr. Claude Baxter.Prof. P. Mandel passed away on October 6th, 1992.  相似文献   

19.
Cerebral stroke is the leading cause of death and permanent disability among elderly people. In both humans and animals, cerebral ischemia damages the nerve cells in vulnerable regions of the brain, viz., hippocampus, cerebral cortex, cerebellum, and hypothalamus. The present study was conducted to evaluate the therapeutic efficacy of nanoencapsulated quercetin (QC) in combating ischemia-reperfusion-induced neuronal damage in young and aged Swiss Albino rats. Cerebral ischemia was induced by occlusion of the common carotid arteries of both young and aged rats followed by reperfusion. Nanoencapsulated quercetin (2.7 mg/kg b wt) was administered to both groups of animals via oral gavage two hours prior to ischemic insults as well as post-operation till day 3. Cerebral ischemia and 30 min consecutive reperfusion caused a substantial increase in lipid peroxidation, decreased antioxidant enzyme activities and tissue osmolality in different brain regions of both groups of animals. It also decreased mitochondrial membrane microviscosity and increased reactive oxygen species (ROS) generation in different brain regions of young and aged rats. Among the brain regions studied, the hippocampus appeared to be the worst affected region showing increased upregulation of iNOS and caspase-3 activity with decreased neuronal count in the CA1 and CA3 subfields of both young and aged rats. Furthermore, three days of continuous reperfusion after ischemia caused massive damage to neuronal cells. However, it was observed that oral treatment of nanoencapsulated quercetin (2.7 mg/kg b wt) resulted in downregulation of iNOS and caspase-3 activities and improved neuronal count in the hippocampal subfields even 3 days after reperfusion. Moreover, the nanoformulation imparted a significant level of protection in the antioxidant status in different brain regions, thus contributing to a better understanding of the given pathophysiological processes causing ischemic neuronal damage.  相似文献   

20.
The immature brain is more resistant to hypoxia/ischemia than the mature brain. Although chronic hypoxia can induce adaptive-changes on the developing brain, the mechanisms underlying such adaptive changes are poorly understood. To further elucidate some of the adaptive changes during postnatal hypoxia, we determined the activities of four enzymes of glucose oxidative metabolism in eight brain regions of hypoxic and normoxic rats. Litters of Sprague-Dawley rats were put into the hypoxic chamber (oxygen level maintained at 9.5%) with their dams starting on day 3 postnatal (P3). Age-matched normoxic rats were use as control animals. In P10 hypoxic rats, lactate dehydrogenase (LDH) activity in cerebral cortex, striatum, olfactory bulb, hippocampus, hypothalamus, pons and medulla, and cerebellum was significantly increased (by 100%–370%) compared to those in P10 normoxic rats. In P10 hypoxic rats, hexokinase (HK) activity in hypothalamus, hippocampus, olfactory bulb, midbrain, and cerebral cortex was significantly decreased (by 15%–30%). Neither -ketoglutarate dehydrogenase complex (KGDHC, which is believed to have an important role in the regulation of the tricarboxylic acid [TCA] cycle flux) nor citrate synthase (CS) activity was significantly decreased in the eight regions of P10 hypoxic rats compared to those in P10 normoxic rats. In P30 hypoxic rats, LDH activity was only increased in striatum (by 19%), whereas HK activity was only significantly decreased (by 30%) in this region. However, KGDHC activity was significantly decreased in olfactory bulb, hippocampus, hypothalamus, cerebral cortex, and cerebellum (by 20%–40%) in P30 hypoxic rats compared to those in P30 normoxic rats. Similarly, CS activity was decreased, but only in olfactory bulb, hypothalamus, and midbrain (by 9%–21%) in P30 hypoxic rats. Our results suggest that at least some of the mechanisms underlying the hypoxia-induced changes in activities of glycolytic enzymes implicate the upregulation of HIF-1. Moreover, our observation that chronic postnatal hypoxia induces differential effects on brain glycolytic and TCA cycle enzymes may have pathophysiological implications (e.g., decreased in energy metabolism) in childhood diseases (e.g., sudden infant death syndrome) in which hypoxia plays a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号