首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dynamic equilibrium analysis of the (H2A-H2B-H3-H4)2 histone octamer with lower oligomers was performed in 2 M NaCl. Calculated data on the relative content of histone oligomers upon changing protein concentration in solution are given. The red shift of lambda max for histone tyrosine fluorescence spectra is shown to be due to hydrogen bond formation by tyrosyl OH-groups. Analysis of free energy changes of histone oligomers upon association (delta G = -17,37 +/- 0,14 kcal/mole) as well as the effect of urea on histone octamer dissociation made it possible to conclude that virtually all tyrosyls in octamer form hydrogen bonds. Intermolecular hydrogen bonds formed by tyrosyls contribute substantially to octamer stabilization. The (H2A-H2B) dimer positive cooperativity in association with the (H3-H4)2 tetramer was found. This cooperativity is caused by interaction between association sites with a two order increase in an apparent constant of dimers with tetramer association. The histone octamer was determined to be of asymmetric structure due to unequivolency of the two binding sites for the (H2A-H2B) dimers.  相似文献   

2.
The accessibility to trypsin of "core" histones within the dimer (H2A-H2B), tetramer (H3-H4)2, octamer (H2A-H2B-H3-H4)2 and in chromatin was studied. It was shown that the hydrolysis of histones H2A and H2B within the dimer and octamer occurs in essentially the same way. The tetramer (H2-H4)2 becomes more compact with an increase in the ionic strength. Some of the tetramer (H3-H4)2 sites within the octamer are protected against trypsin. It was demonstrated that in terms of the histone accessibility to trypsin chromatin can exist in three states, i.e., tightly packed (in the presence of histone H1 and bivalent cations), intermediate (in the absence of histone H1 or bivalent cations) and folded (in the absence of histone H1 and bivalent cations). The folding of histones in neither of these chromatin states coincides with that within the octamer in 2M NaCl.  相似文献   

3.
Gel filtration and sedimentation studies have previously established that the vertebrate animal core histone octamer is in equilibrium with an (H3-H4)2 tetramer and an H2A-H2B dimer [Eickbush, T. H., & Moudrianakis, E. N. (1978) Biochemistry 17, 4955-4964; Godfrey, J. E., Eickbush, T. H., & Moudrianakis, E. N. (1980) Biochemistry 19, 1339-1346]. We have investigated the core histone octamer of wheat (Triticum aestivum L.) and have found it to be much more stable than its vertebrate animal counterpart. When vertebrate animal histone octamers are subjected to gel filtration in 2 M NaCl, a trailing peak of H2A-H2B dimer can be clearly resolved from the main octamer peak. When the plant octamer is subjected to the identical procedure, there is no trailing peak of H2A-H2B dimer, but rather a single peak containing the octamer. A sampling across the octamer peak from leading to trailing edge shows no change in the ratio of H2A-H2B to (H3-H4)2. Surprisingly, the plant octamer shows the same stability at 0.6 M NaCl, a salt concentration in which the vertebrate animal octamer dissociates into dimers and tetramers. Equilibrium sedimentation data indicate that the assembly potential of the wheat histones in 2 M NaCl is very high at all protein concentrations above 0.1 mg mL-1. In order to disrupt the forces stabilizing the plant histone octamer at high histone concentrations, the concentration of NaCl must be lowered to approximately 0.3 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A simple and fast method for isolation of large amounts of the histone octamer (H2A-H2B-H3-H4)2 is proposed. This method is based on chromatin adsorption by hydroxyapatite with subsequent extraction of the histone octamer with 50 mM sodium-phosphate buffer containing 4 M NaCl pH 8.0. It was shown that the properties of the histone octamer isolated by this extractive procedure are identical with those of the histone octamer obtained by elution on a Sephadex G-100 column. The histone tetramer (H3-H4)2 and dimer (H2A-H2B) were obtained after gel filtration on Sephadex G-100 in 50 mM sodium-acetate (pH 5.6).  相似文献   

5.
The salt-dependent structural changes of the histone octamer in complex with high-molecular-weight DNA have been studied by fluorescent spectroscopy. Changes in both the spectra maximum position and anisotropy of the histone tyrosine fluorescence reveal structural transitions in nucleosome within the ranges of 0.5-3 mM and 20-30 mM NaCl. Comparison of the octamer fluorescent parameters in complex with DNA as well as in a free state permits to interpret the revealed structural transitions as a change in degree of contacts stability between (H2A-H2B) dimer and (H3-H4)2 tetramer. More pronounced conformational changes in histone octamer are observed under the conditions of polynucleosome fibers interaction within the range of physiological ionic strength (100-600 mM NaCl). As far as fluorescent parameters are concerned, the aforementioned changes are connected with entire destruction of (H2A-H2B) dimer specific contacts with (H3-H4)2 tetramer. The obtained results suggest the possibility of existence of different structural states of histone octamer in the chromatin composition including those which are quite dissimilar from the octamer structure in the 2M NaCl solution.  相似文献   

6.
Structure of the (H2A-H2B-H3-H4)2 histone octamer isolated from calf thymus chromatin at ionic strength 0.1 to 4.0 M NaCl, pH 7.6, was studied spectrofluorometrically. Sensitivity of lambda max tyrosine fluorescence position to structural changes of histone oligomers and to the processes of their association was shown. It were detect two ranges of cooperative changes in histone optical parameters at 0.6-1.4 M NaCl (transition I) and at 2.4-3.4 M NaCl (transition II): Transition I corresponds to the formation of equilibrium system (hexamer) + (dimer) in equilibrium octamer. Transition II corresponds to the structural changes of the histone octamer. Thus, fluorescence anisotropy increases, lambda max for fluorescence spectrum is shifted to the longer wavelengths, contributions of two components to fluorescence decay change, a fraction of fluorescence accessible to the quenching by I- decreases. Histone octamer formation is characterized by making specific contacts between the (H2A-H2B) dimer and (H3-H4)2 tetramer. These contacts are realized at gradual changing of ionic strengths (by dialysis). In the case of abrupt local changes of the environment the process is irreversibly shifted to formation of unspecific high molecular aggregates. The important function role for energetically degenerated states of histone oligomers, energy barriers between which can be overcome by changing total conditions of histone microenvironment in chromatin is discussed.  相似文献   

7.
Spectropolarimetric analysis of the core histone octamer and its subunits   总被引:3,自引:0,他引:3  
The secondary structure of the calf thymus core histone octamer, (H2A-H2B-H3-H4)2, and its two physiological subunits, the H2A-H2B dimer and (H3-H4)2 tetramer, was analyzed by ORD spectropolarimetry as a function of temperature and solvent ionic strength within the ranges of these experimental parameters where assembly of the core histone octamer exhibits pronounced sensitivity. While the secondary structure of the dimer is relatively stable from 0.1 to 2.0 M NaCl, the secondary structure of the tetramer exhibits complex changes over this range of NaCl concentrations. Both complexes exhibit only modest responses to temperature changes. ORD spectra of very high and very low concentrations of stoichiometric mixtures of the core histones revealed no evidence of changes in the ordered structure of the histones as a result of the octamer assembly process at NaCl concentrations above 0.67 M, nor were time-dependent changes detected in the secondary structure of tetramer dissolved in low ionic strength solvent. The secondary structure of the chicken erythrocyte octamer dissolved in high concentrations of ammonium sulfate, including those of our crystallization conditions, was found to be essentially unchanged from that in 2 M NaCl when examined by both ORD and CD spectropolarimetry. The two well-defined cleaved products of the H2A-H2B dimer, cH2A-H2B and cH2A-cH2B, exhibited reduced amounts of ordered structure; in the case of the doubly cleaved moiety cH2A-cH2B, the reductions were so pronounced as to suggest marked structural rearrangements.  相似文献   

8.
The association of histones H2A, H2B, H3, and H4 in solution has been studied. In 2 M NaCl and at neutral pH they can assemble in a complex in which each histone is present in equimolar amounts. The complex has a weight average molecular weight of 98,000 (+/- 3700) and a sedimentation coefficient (so20,w) of 4.8. The value of the weight average molecular weight and the histone stoichiometry indicate that the complex is an octamer. The pairs of histones H2A,H2B and H3,H4 studied separately under identical conditions only associated as equimolar complexes consistent with dimeric and tetrameric structures, respectively. The stability of the core histone octamer is a function of the ionic strength, pH, and concentration of protein. The octamer dissociates by losing dimers of H2A,H2B until the main complexes existing in solution are the H3.H4 tetramer and the H2A.H2B dimer. This process is reversible upon reestablishing the original conditions.  相似文献   

9.
It was shown that the histone tetramer (H3-H4)2 fluorescence spectra were shifted by about 2 nm towards the long-wave region and had a larger halfwidth than the free tyrosine fluorescence spectra. Denaturation with 8 m urea resulted in a shift towards the short-wave region and a decrease in the halfwidth of the histone tetramer (H3-H4)2 tyrosine fluorescence spectra. Fluorescence quenching of the histone tetramer (H3-H4)2 by iodine ions was analysed by the Stern-Volmer equation. It was estimated that at 0.1 m NaCl and 0.3–0.8 m NaCl, 45% and 60% tyrosyl fluorescence, respectively, was quenched by I? ions. The results obtained suggests that histone tetramer (H3-H4)2 may have several structural forms distinguished by the amount of ‘exposed’ and ‘buried’ tyrosyls depending upon the conditions of the medium.  相似文献   

10.
Substitution of Cys 110 of chicken histone H3 with N-iodoacetyl-N1-(5-sulpho-1-naphthyl)ethylenediamine or iodoacetamide prevents octamer formation in 2 M NaCl but does not prevent polyglutamic acid-mediated core particle assembly.  相似文献   

11.
S F Scarlata  T Ropp  C A Royer 《Biochemistry》1989,28(16):6637-6641
High-pressure fluorescence polarization was used to investigate subunit interactions of the histone H2A-H2B dimer and the H3/H4 tetramer isolated from calf thymus (CT) and chicken erythrocyte (CE) chromatin. The proteins were individually labeled with the fluorescent probe 5-(dimethylamino)-naphthalene-1-sulfonate (dansyl or DNS), and the fluorescence polarization was measured as a function of pressure. The long fluorescence lifetime of the probe allows for the observation of global rotations of the protein, the rate of which is dependent upon the aggregation state. From the pressure dependence of the dansyl polarization, the Kd of H2A-H2B dissociation of the CE dimer was found to be approximately 1 X 10(-7) M at 2.0 M NaCl. Lowering the salt concentration to 200 mM slightly stabilized the protein to 6 X 10(-8) M. Our data indicate a small negative volume change for the dissociation of the core particle octamer. The (H3)2(H4)2 tetramer, as was shown in the previous paper (Royer et al., 1989), also formed predominantly dimers of tetramers at higher protein or salt concentrations. In the study presented here, we found the dissociation constant for the H3/H4 octamer to dimer transition to be 1 X 10(-21) M3 (C1/2 = 4 X 10(-8) M) at 2 M NaCl for the CT preparation. Decreasing the salt concentration to 200 mM reduced the stability of the CT H3/H4 octamer to 9 X 10(-21) M3 (C1/2 = 8 X 10(-8) M). The dimer of the CE tetramer also dissociated upon application of pressure in 2 M salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The way in which histones interact with DNA during in vitro assembly of nucleohistone has been examined. Chicken erythrocyte core histones H2A, H2B, H3, and H4 and lambdaDNA in 2 M NaCl were allowed to interact by stepwise decrease in the salt concentration. Binding, although weak, was first observed at 1.4 M NaCl and was essentially completed at 0.6 M NaCl. Analysis of the DNA-bound histones revealed that each of the histones in the pairs H2A,H2B and H3,H4 was always present in equimolar amounts and that the relative proportion of each pair was constant between 1.4 and 0.8 M NaCl. Evidence is presented suggesting that binding occurred via complexes of the four histones, the nature of which is likely to reflect the equilibrium among the octamer and its products of dissociation (Ruiz-Carrillo, A., & Jorcano, J.L. (1979) Biochemistry (preceding paper in this issue)). The presence of complexes of the four core histones is, however not required for the correct assembly of the nucleosome core particle. Nucleohistones obtained by adding at progressively lower ionic strengths the dimer H2A.H2B to the H3.H4-DNA complex (split reconstitutions) had the same characteristics as those assembled with the core histone complexes.  相似文献   

14.
M A Nieto  E Palacián 《Biochemistry》1988,27(15):5635-5640
Treatment of nucleosomal particles and isolated core-histone octamers with dimethylmaleic anhydride, but not with acetic anhydride, is accompanied by a biphasic release of the two H2A.H2B dimers, the first dimer being more easily released than the second. With both kinds of particles, 50% of histones H2A and H2B are released for modification of approximately 35% of the histone amino groups. The similar behavior of nucleosomal particles and isolated core-histone octamers is consistent with the same structure of the histone octamer in the nucleosomal particle and in the free octamer in 2 M NaCl. The described release of H2A.H2B dimers allows the preparation of nucleosomal particles deficient in one H2A.H2B dimer and of the histone hexamers H2A.H2B.(H3.H4)2. For more extensive modifications, both reagents, acetic and dimethylmaleic anhydrides, cause the dissociation of nucleosomal particles with liberation of double-stranded DNA, which suggests that lysine amino groups are involved in the binding of histones to DNA. The modified nucleosomal particles are more sensitive to ionic strength than those untreated, and the presence of salt (NaCl) increases the extent of DNA release. The histones corresponding to the liberated DNA, except H2A and H2B released with dimethylmaleic anhydride, are apparently bound to the DNA-containing particles as extra histones.  相似文献   

15.
A H3 dimer band is produced when purified native histone octamers are run on an SDS-PAGE gel in a beta-mercaptoethanol-free environment. To investigate this, native histone octamer crystals, derived from chicken erythrocytes, and of structure (H2A-H2B)-(H4-H3)-(H3'-H4')-(H2B'-H2A'), were grown in 2 M KCl, 1.35 M potassium phosphates and 250-350 microM of the oxidising agent S-nitrosoglutathione, pH 6.9. X-ray diffraction data were acquired to 2.10 A resolution, yielding a structure with an Rwork value of 18.6% and an Rfree of 22.5%. The space group is P6(5), the asymmetric unit of which contains one complete octamer. Compared to the 1.90 A resolution, unoxidised native histone octamer structure, the crystals show a reduction of 2.5% in the c-axis of the unit cell, and free-energy calculations reveal that the H3-H3' dimer interface in the latter has become thermodynamically stable, in contrast to the former. Although the inter-sulphur distance of the two H3 cysteines in the oxidised native histone octamer has reduced to 6 A from the 7 A of the unoxidised form, analysis of the hydrogen bonds that constitute the (H4-H3)-(H3'-H4') tetramer indicates that the formation of a disulphide bond in the H3-H3' dimer interface is incompatible with stable tetramer formation. The biochemical and biophysical evidence, taken as a whole, is indicative of crystals that have a stable H3-H3' dimer interface, possibly extending to the interface within an isolated H3-H3' dimer, observed in SDS-PAGE gels.  相似文献   

16.
A natural chromatin containing simian virus 40 (SV40) DNA and histone has been used to examine changes in chromatin structure caused by various physical and chemical treatments. We find that histone H1 depleted chromatin is more compact in solutions of 0.15M NaCl or 2 mM MgCl2 than in 0.01 M NaCl or 0.6M NaCL, and is compact in 0.01 M NaCl solutions if histone H 1 is present. Even high concentrations of urea did not alter the fundamental beaded structure, consisting of 110A beads of 200 base pair content, each joined by thin DNA bridges of 50 base pairs. The physical bead observed by EM therefore contains more DNA than the 140 base pair "core particle". The natural variation in the bridge length is consistent with the broad bands observed after nuclease digestion of chromatin. Chromatin prepared for EM without fixation containing long 20A to 30A fibers possibly complexed with protein.  相似文献   

17.
Neutron scattering studies of chromatosomes   总被引:3,自引:0,他引:3  
Neutron scattering data establish that the radius of gyration of the DNA in chicken erythrocyte chromatosome particles is significantly higher, by about 0.3 nm, than the radius of gyration of the DNA in the core particle. Corresponding information of the radius of gyration of the protein component in the chromatosomes (3.75 nm) indicated an enlargement, compared to the radius of gyration of the octamer of histone proteins both in core particles and in the histone octamer stabilised in 2 M NaCl (3.25 nm). From the latter data, we could calculate the distance in the chromatosome between the centre of mass of the linker histone and the histone octamer as 5.5 nm. These results impose severe limitations for the organisation of the 22 bp extra DNA and the possible location of H1/H5 in the chromatosome, implying that the H1/H5 is close to the centre turn of the core particle DNA.  相似文献   

18.
A hybrid histone octamer was reconstituted from erythrocyte H2A and H2B, avian [110 Cys-des-thio]histone H3 and the sea-urchin sperm [73Cys]H4 variant. [110Cys-Des-thio]histone H3 was prepared by reaction of natural H3 with Raney nickel. The ability of the hybrid octamer to crystallize to the same form as the natural octamer demonstrated that the chemical modification of cysteine to alanine in H3 and the mutation from threonine to cysteine in sperm H4 do not alter histone-histone interactions in the octamer. Since the sulfhydryl groups of both H4 molecules are fully accessible to 5,5'-dithiobis(2-nitrobenzoate) these residues provide suitable sites for the introduction of a single cysteine-specific label per H4 molecule in the octamer.  相似文献   

19.
A model is proposed which describes the packing of polypeptide chains of histone molecules in the octamer (H3--H4--H2A--H2B)2, and interlocation of DNA and octamer in the nucleosome. DNA packing in the nucleosome is provided for by electrostatic interactions between DNA phosphates and cationic groups located on the globular part surface of histones octamer. The cationic groups of N- and C-end regions of the histone molecules (histones H3 and H4 in particular) additionally stabilize the nucleosome structure.  相似文献   

20.
The spin label method has been used to obtain information about conformational changes of histone oligomers taking advantage of the fact that at a low ionic strength and in the presence of other histones about 45% of cysteine residues of histone H3 react with the 3-maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl spin label. For the labeled complexes H3-H4 and H nu the degree of immobilization of the spin label is a function of the ionic strength. This variation is identical for both complexes within a long range of ionic strengths, including the interval of 0.8-2 M NaCl, under which conditions interactions are known to exist between the tetramer (H3)2 (H4)2 and the dimer (H2A) (H2B). This finding suggests a negligible influence of the dimer for modifying the cysteine residue environment of histone H3 on octamer formation. GuHCl treatment at high ionic strength of the labeled complexes gives rise to a non-lineal increase in the degree of mobility of the spin label. This increase, at low GuHCl concentration (0-0.5 M GuHCl), is interpreted as showing a lowering in rigidity for the Cys residue environment, without affecting the general stability of the tetramer (H3)2 (H4)2. At higher GuHCl concentration (2-3 M GuHCl) the increase in the spin label mobility is related to a dissociation of the complexes in single histones. Our results are consistent with the view that the overall structure of the tetramer, as well as its conformational changes during complex structuration or denaturation, are not strongly affected by the presence of the dimer (H2A) (H2B).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号