首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite a vast literature on the factors controlling adult size, few studies have investigated how maternal size affects offspring size independent of direct genetic effects, thereby separating prenatal from postnatal influences. I used a novel experimental design that combined a cross-fostering approach with phenotypic manipulation of maternal body size that allowed me to disentangle prenatal and postnatal maternal effects. Using the burying beetle Nicrophorus vespilloides as model organism, I found that a mother''s body size affected egg size as well as the quality of postnatal maternal care, with larger mothers producing larger eggs and raising larger offspring than smaller females. However, with respect to the relative importance of prenatal and postnatal maternal effects on offspring growth, only the postnatal effects were important in determining offspring body size. Thus, prenatal effects can be offset by the quality of postnatal maternal care. This finding has implications for the coevolution of prenatal and postnatal maternal effects as they arise as a consequence of maternal body size. In general, my study provides evidence that there can be transgenerational phenotypic plasticity, with maternal size determining offspring size leading to a resemblance between mothers and their offspring above and beyond any direct genetic effects.  相似文献   

2.
Processes which generate natal dispersal are largely unknown. This is particularly the case for the sources of differences among families. Three types of processes can generate the variability among families: genetic, prenatal and postnatal. We first tested the family resemblance of dispersal behaviour in the common lizard (Lacerta vivipara). We then experimentally investigated the role of pre‐ and postnatal factors in the variability of dispersal among families. From 1989 to 1992, we studied dispersal of juveniles from pregnant females captured in the field and maintained in laboratory until parturition. We manipulated the conditions of gestation to test for prenatal effects on juvenile dispersal. We tested postnatal effects by releasing siblings of the same family in contrasted environments. We also examined covariances of natal dispersal with maternal and offspring traits. The results showed that: (1) dispersal behaviour was similar among siblings, (2) determinants of offspring dispersal differed between sexes and years, (3) offspring dispersal was related to litter sex‐ratio and offspring corpulence at birth, (4) postnatal conditions influenced male dispersal, (5) short‐term prenatal conditions (i.e. maternal conditions during gestation) influenced juvenile dispersal, varying per year, (6) long‐term prenatal conditions (i.e. maternal conditions during gestation in the previous year) could also influence juvenile dispersal (marginally significant). Thus, several types of processes determine natal dispersal in the common lizard. Resemblance among siblings can partly be explained by both pre‐ and postnatal effects. The environment seems to be the major factor influencing juvenile dispersal in this species, i.e. dispersal essentially appears condition‐dependent. The genetic basis of dispersal in vertebrates remains to be demonstrated by studies controlling for both prenatal and postnatal conditions.  相似文献   

3.
Predation is a strong selective pressure generating morphological, physiological and behavioural responses in organisms. As predation risk is often higher during juvenile stages, antipredator defences expressed early in life are paramount to survival. Maternal effects are an efficient pathway to produce such defences. We investigated whether maternal exposure to predator cues during gestation affected juvenile morphology, behaviour and dispersal in common lizards (Zootoca vivipara). We exposed 21 gravid females to saurophagous snake cues for one month while 21 females remained unexposed (i.e. control). We measured body size, preferred temperature and activity level for each neonate, and released them into semi-natural enclosures connected to corridors in order to measure dispersal. Offspring from exposed mothers grew longer tails, selected lower temperatures and dispersed thrice more than offspring from unexposed mothers. Because both tail autotomy and altered thermoregulatory behaviour are common antipredator tactics in lizards, these results suggest that mothers adjusted offspring phenotype to risky natal environments (tail length) or increased risk avoidance (dispersal). Although maternal effects can be passive consequences of maternal stress, our results strongly militate for them to be an adaptive antipredator response that may increase offspring survival prospects.  相似文献   

4.
Sexual dimorphism, or sex-specific trait expression, may evolve when selection favours different optima for the same trait between sexes, that is, under antagonistic selection. Intra-locus sexual conflict exists when the sexually dimorphic trait under antagonistic selection is based on genes shared between sexes. A common assumption is that the presence of sexual-size dimorphism (SSD) indicates that sexual conflict has been, at least partly, resolved via decoupling of the trait architecture between sexes. However, whether and how decoupling of the trait architecture between sexes has been realized often remains unknown. We tested for differences in architecture of adult body size between sexes in a species with extreme SSD, the African hermit spider (Nephilingis cruentata), where adult female body size greatly exceeds that of males. Specifically, we estimated the sex-specific importance of genetic and maternal effects on adult body size among individuals that we laboratory-reared for up to eight generations. Quantitative genetic model estimates indicated that size variation in females is to a larger extent explained by direct genetic effects than by maternal effects, but in males to a larger extent by maternal than by genetic effects. We conclude that this sex-specific body-size architecture enables body-size evolution to proceed much more independently than under a common architecture to both sexes.  相似文献   

5.
Sexual size dimorphism (SSD) is a common phenomenon caused by a variety of environmental and genetic mechanisms in animals. In the current study, we investigate the demography of a population of eastern fence lizards ( Sceloporus undulatus ) to compare age structure and survivorship between the sexes, and we examine growth rates of juveniles under both natural and controlled laboratory conditions to elucidate causes of SSD in this species. Furthermore, using our laboratory growth data, we examine the heritability of juvenile growth rates. Our results show that SSD develops in the field before the end of the first year of age (before sexual maturity) because juvenile females grow more rapidly than juvenile males. In the laboratory environment, however, we observed no sexual difference in growth rates for lizards up to the size of maturity in the field. Thus, sexual differences in growth rate and subsequent development of SSD in this population are highly plastic and subject to strong proximal control. We found high levels of additive genetic variance for juvenile growth, indicating a strong potential for selection to operate on juvenile growth rates. Our results indicate that selection on juvenile growth rate could account for differences in growth among populations but would not necessarily contribute to SSD within our population due to the high plasticity in growth rate.  相似文献   

6.
Much of life‐history theory rests on fundamental assumptions about constraints on the acquisition and allocation of energy to growth and reproduction. In general, the allocation of energy to reproduction depends on maternal size, which in turn depends on environmental factors experienced throughout the life of the mother. Here, we used phylogenetic path analyses to evaluate competing hypotheses about the environmental and maternal drivers of reproductive traits in lizards. In doing so, we discovered that precipitation, rather than temperature, has shaped the evolution of the life history. Specifically, environments with greater rainfall have enabled the evolution of larger maternal size. In turn, these larger mothers produce larger clutches of larger offspring. However, annual precipitation has a negative direct effect on offspring size, despite the positive indirect effect mediated by maternal size. Possibly, the evolution of offspring size was driven by the need to conserve water in dry environments, because small organisms are particularly sensitive to water loss. Since we found that body size variation among lizards is related to a combination of climatic factors, mainly precipitation and perhaps primary production, our study challenges previous generalizations (e.g., temperature‐size rule and Bergmann''s rule) and suggests alternative mechanisms underlying the evolution of body size.  相似文献   

7.
Sexual‐size dimorphism (SSD) is widespread in animals. Body length is the most common trait used in the study of SSD in reptiles. However, body length combines lengths of different body parts, notably heads and abdomens. Focusing on body length ignores possible differential selection pressures on such body parts. We collected the head and abdomen lengths of 610 lizard species (Reptilia: Squamata: Sauria). Across species, males have relatively larger heads, whereas females have relatively larger abdomens. This consistent difference points to body length being an imperfect measure of lizard SSD because it comprises both abdomen and head lengths, which often differ between the sexes. We infer that female lizards of many species are under fecundity selection to increase abdomen size, consequently enhancing their reproductive output (enlarging either clutch or offspring size). In support of this, abdomens of lizards laying large clutches are longer than those of lizards with small clutches. In some analyses, viviparous lizards have longer abdomens than oviparous lizards with similar head lengths. Our data also suggest that male lizards are under sexual selection to increase head size, which is positively related to winning male–male combats and to faster grasping of females. Thus, larger heads could translate into higher probability to mate. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 665–673.  相似文献   

8.
Quantitative genetic theory predicts that evolution of sexual size dimorphism (SSD) will be a slow process if the genetic correlation in size between the sexes is close to unity, and the heritability of size is similar in both sexes. However, there are very few reliable estimates of genetic correlations and sex-specific heritabilities from natural populations, the reasons for this being that (1) offspring have often been sexed retrospectively, and hence, selection acting differently with respect to body size in the two sexes between measuring and sex identification can bias estimates of SSD; and (2) in many taxa, parents may be incorrectly assigned to offspring either because of assignment errors or because of extrapair paternity. We used molecular sex and paternity identification to overcome these problems and estimated sex-specific heritabilities and the genetic correlation in body size between the two sexes in the collared flycatcher, Ficedula albicollis. After exclusion of the illegitimate offspring, the genetic correlation in body size between the sexes was 1.00 (SE = 0.22), implying a severe constraint on the evolution of SSD in this species. Furthermore, sex-specific heritability estimates were very similar, indicating that neither sex will be able to evolve faster than the other. By using estimated genetic parameters, together with empirically derived estimates of sex-specific selection gradients, we further demonstrated that the predicted selection response in female tarsus length is displaced about 200% in the opposite direction from that to be expected if there were no genetic correlation between the sexes. The correspondence between the biochemically estimated rate of extrapair paternity (about 15 % of the young) and that estimated from the “heritability method” (11%) was good. However, the estimated rate of extrapair paternity with the heritability method after exclusion of the illegitimate young was 22%, adding to increasing evidence that factors other than extrapair paternity (e.g., maternal effects) may be resposible for the commonly observed higher mother-offspring than father-offspring resemblance.  相似文献   

9.
Offspring phenotype can be affected by maternal history before and during gestation. Offspring sensitivity to maternal conditions is believed to have evolved to favor preadaptation of offspring to environmental factors they are likely to encounter. Because the locomotor capacity of an individual is likely to have important fitness consequences, we examined the role of long-term and short-term prenatal conditions on offspring's locomotor performance in the lizard Lacerta vivipara. To examine long-term prenatal effects, we manipulated the density of two populations, leaving two additional populations as unmanipulated. We then collected pregnant females within these four populations (Cévennes, Massif Central, France) and kept them in the laboratory until parturition. To examine short-term prenatal effects, we manipulated the corticosterone level of half the females within each population. We took two different measurements of offspring locomotion: sprint speed and endurance. As already documented, sprint speed was positively correlated with offspring body size. Although population density significantly affected female fecundity, neither the density manipulation nor the population of origin influenced offspring phenotype. Corticosterone administered during gestation decreased juvenile sprint speed but did not affect juvenile endurance. Furthermore, we observed that the motivation to run was influenced by maternal hormonal treatment. Juveniles born from corticosterone-treated mothers needed more stimuli than those born from control mothers. We conclude, therefore, that the action of corticosterone on sprint speed could be more behavioral than physiological. Offspring phenotype as measured by endurance and sprint speed appeared partly under maternal control.  相似文献   

10.
We demonstrate that egg size in side-blotched lizards is heritable (parent-offspring regressions) and thus will respond to natural selection. Because our estimate of heritability is derived from free-ranging lizards, it is useful for predicting evolutionary response to selection in wild populations. Moreover, our estimate for the heritability of egg size is not likely to be confounded by nongenetic maternal effects that might arise from egg size per se because we estimate a significant parent-offspring correlation for egg size in the face of dramatic experimental manipulation of yolk volume of the egg. Furthermore, we also demonstrate a significant correlation between egg size of the female parent and clutch size of her offspring. Because this correlation is not related to experimentally induced maternal effects, we suggest that it is indicative of a genetic correlation between egg size and clutch size. We synthesize our results from genetic analyses of the trade-off between egg size and clutch size with previously published experiments that document the mechanistic basis of this trade-off. Experimental manipulation of yolk volume has no effect on offspring reproductive traits such as egg size, clutch size, size at maturity, or oviposition date. However, egg size was related to offspring survival during adult phases of the life history. We partitioned survival of offspring during the adult phase of the life history into (1) survival of offspring from winter emergence to the production of the first clutch (i.e., the vitellogenic phase of the first clutch), and (2) survival of the offspring from the production of the first clutch to the end of the reproductive season. Offspring from the first clutch of the reproductive season in the previous year had higher survival during vitellogenesis of their first clutch if these offspring came from small eggs. We did not observe selection during these prelaying phases of adulthood for offspring from later clutches. However, we did find that later clutch offspring from large eggs had the highest survival over the first season of reproduction. The differences in selection on adult survival arising from maternal effects would reinforce previously documented selection that favors the production of small offspring early in the season and large offspring later in the season—a seasonal shift in maternal provisioning. We also report on a significant parent-offspring correlation in lay date and thus significant heritable variation in lay date. We can rule out the possibility of yolk volume as a confounding maternal effect—experimental manipulation of yolk volume has no effect on lay date of offspring. However, we cannot distinguish between genetic effects (i.e., heritable) and nongenetic maternal effects acting on lay date that arise from the maternal trait lay date per se (or other unidentified maternal traits). Nevertheless, we demonstrate how the timing of female reproduction (e.g., date of oviposition and date of hatching) affect reproductive attributes of offspring. Notably, we find that date of hatching has effects on body size at maturity and fecundity of offspring from later clutches. We did not detect comparable effects of lay date on offspring from the first clutch.  相似文献   

11.
Two embryo transfer experiments were carried out in order to estimate the magnitude of prenatal maternal effects, independent of postnatal maternal factors, on the growth of internal organs and fat pads in mice. Reciprocal embryo transfers between the inbred mouse strains C3HeB/FeJ and SWR/J yielded three significant findings. First, all traits were not equally influenced by prenatal maternal factors. Genetic prenatal maternal factors, stemming from the genotype of the uterine mother, had a significant effect on testis weight, subcutaneous fat pad weight and epididymal fat pad weight in 21 day old progeny, but they had no effect on cranial capacity, an index of brain size, kidney weight, or liver weight. Prenatal litter size, defined as the sum of live and dead pups at birth, had a significant negative relationship with 21 day testis weight and kidney weight, and a significant positive association with subcutaneous and epididymal fat pad weights. Cranial capacity and liver weight at 21 days postnatally were not influenced by prenatal litter size. Second, the experiments demonstrated that there was ontogenetic variability in the strength of prenatal maternal effects. At 70 days of age, only subcutaneous fat pad weight was significantly influenced by genetic prenatal effects, and prenatal litter size had a significant negative relationship only with subcutaneous fat pad weight and body weight. Third, genetic prenatal effects had a significant influence on the among-trait covariances at 21 days postnatally, but not at 70 days. Because multivariate evolution involves covariances among characters, the latter results suggest that prenatal effects due to the mother's genotype can affect phenotypic evolution of mammals, especially for selection imposed early in life.  相似文献   

12.
Dispersal is a complex phenomenon affected by multiple factors. Among the factors that influence dispersal in the common lizard (Lacerta vivipara), poor maternal body condition and stress are known to decrease dispersal propensity of juveniles. But the effect of individual factors on dispersal could change when several of them act concurrently or at different developmental stages. Prenatal factors can affect clutch and/or juvenile characteristics that later affect dispersal. Postnatal influences are mainly exerted on juvenile dispersal behavior. We investigated the role of body condition and stress on dispersal at a prenatal and a postnatal stage. Stress was mimicked by experimentally increasing corticosterone levels in pregnant females and recently born juveniles. We considered (1). the influence of maternal body condition and prenatal corticosterone treatment on clutch, juvenile characteristics and on dispersal behavior and (2). the influence of juvenile body condition and postnatal corticosterone treatment on juvenile dispersal behavior. There was an interaction between maternal condition and prenatal corticosterone treatment on juvenile dispersal. Dispersal decreased with maternal corticosterone increase only in juveniles from the more corpulent females, while it increased with juvenile body condition. Good maternal body condition affected clutch and juvenile characteristics favoring dispersal, while elevation of corticosterone level (stress) exerted the opposite effect. Juvenile body condition favored dispersal, while there was no effect of postnatal corticosterone treatment on juvenile dispersal propensity.  相似文献   

13.
Maternal effects affect offspring phenotype and fitness. However, the roles of offspring sex-specific sensitivity to maternal glucocorticoids and sex-biased maternal investment remain unclear. It is also uncertain whether telomere length (a marker associated with lifespan) depends on early growth in a sex-specific manner. We assessed whether maternal traits including corticosterone (CORT; the main avian glucocorticoid) and in ovo growth rate are sex-specifically related to offspring CORT exposure, relative telomere length (RTL) and body condition in eiders (Somateria mollissima). We measured feather CORT (fCORT), RTL and body condition of newly hatched ducklings, and growth rate in ovo was expressed as tarsus length at hatching per incubation duration. Maternal traits included baseline plasma CORT, RTL, body condition and breeding experience. We found that fCORT was negatively associated with growth rate in daughters, while it showed a positive association in sons. Lower offspring fCORT was associated with higher maternal baseline plasma CORT, and fCORT was higher in larger clutches and in those hatching later. The RTL of daughters was negatively associated with maternal RTL, whereas that of males was nearly independent of maternal RTL. Higher fCORT in ovo was associated with longer RTL at hatching in both sexes. Duckling body condition was mainly explained by egg weight, and sons had a slightly lower body condition. Our correlational results suggest that maternal effects may have heterogeneous and even diametrically opposed effects between the sexes during early development. Our findings also challenge the view that prenatal CORT exposure is invariably associated with shorter telomeres.  相似文献   

14.
Fecundity is a primary component of fitness. Theory predicts that the evolution of fecundity through increased brood size results from fecundity selection favouring larger female size to accommodate more offspring and to store more energy. This is expected to generate asymmetric selection on body size between the sexes, ultimately driving evolution of female-biased sexual size dimorphism. Additionally, it has been predicted that the intensity of fecundity selection increases when the opportunities for reproduction are reduced by the limiting thermal effects of increasing latitude-elevation (i.e. decreasing environmental temperatures) on the length of the reproductive season. This later factor would be particularly strong among ectotherms, where reproduction is heavily temperature-dependent. However, this integrative perspective on reproductive evolution by fecundity selection has rarely been investigated. Here, we employ a comparative approach to investigate these predictions in Liolaemus, a prominent lizard radiation. As expected, Liolaemus reproductive output (i.e. offspring number per reproductive episode) increases predictably with increasing female size. However, contrary to predictions, we found that increased fecundity does not translate into female-biased SSD, and that combined latitude-elevation does not impose a detectable effect on fecundity. Finally, our allometric analyses reveal that SSD scales with body size, which supports the occurrence of Rensch’s rule in these lizards. We discuss the evolutionary implications of our results, and the assumptions of the investigated hypotheses.  相似文献   

15.
Adaptive significance of maternal induction of density-dependent phenotypes   总被引:2,自引:0,他引:2  
Density has been demonstrated to impact life history traits such as growth, fecundity and survival. Some authors have proposed that morphological and behavioral traits have evolved in response to density conditions. To escape the adverse effect of density, individuals can either adapt to crowding or avoid crowding by dispersing. The aim of this work is to study the interplay between local adaptation and dispersal in four populations of the common lizard, Lacerta vivipara, where densities of both the maternal and juvenile environment have been experimentally manipulated. Density was decreased in the spring by removing a quarter of the population at two sites and was un-manipulated in two other sites. One month later, we caught some pregnant females and kept them in the laboratory until parturition. To manipulate density of postnatal neonates and juveniles, we divided each clutch into two, and released half of the juveniles either in a reduced density site or in a control one. We then recaptured individuals a year after release and recorded their size and weight. When density was reduced, females increased their clutch size, but produced offspring of lower body condition than in the control sites. The conspicuous ventral color of females was likewise increased when density was reduced. However, offspring growth rate, local survival and dispersal were not influenced by maternal density. Juvenile females released in the reduced-density site had lower survival rate than those released in the control density site. Contrary to expectations, offspring dispersal was significantly higher at the reduced compared to control density sites. There was no interaction between maternal density habitat and the juvenile release habitat indicating that maternal effects did not influence juvenile life history traits in a different way according to the level of density. Moreover, clutch size and offspring size had no effect on juvenile growth or survival.  相似文献   

16.
《新西兰生态学杂志》2011,35(3):254-260
Understanding the factors that drive population persistence and growth is fundamental to both conservation management and evolutionary biology. Internal (maternal) and external (environmental) factors can affect female reproductive output, and in oviparous reptiles both may strongly influence offspring phenotype and quality. However, the link between these effects, their importance for reproductive output and offspring characteristics of live-bearing lizards, and whether population declines are linked to these factors in modified versus native habitats are unknown. We used a common New Zealand skink species, Oligosoma maccanni (McCann?s skink), found in grazed native and exotic grassland to test whether differences in environmental or maternal characteristics influenced birth date, pregnancy success and offspring phenotype. In both grassland types the date of birth was c. 8 days earlier at lower altitudes (altitudinal range = 564?719 m a.s.l), and small females were less likely to have successful pregnancies. However, larger females had more weak or deformed offspring, suggesting that reproductive senescence may exist in this species. While other research shows that exotic grasslands do not support as many skinks as native tussock grassland, reproductive success of pregnant skinks (viable litter size) was not affected by habitat modification. However, neonates had greater body condition (mass for length) when from females with higher post-partum body condition, and these females were from the native tussock grasslands. In conjunction with previously published data on McCann?s skink, our data suggest that reduced offspring quality may contribute to the lower population numbers in the exotic habitats.  相似文献   

17.
We examine the effect of iteroparity on the evolution of dispersal for a species living in a stable but fragmented habitat. We use a kin selection model that incorporates the effects of demographic stochasticity on the local age structure and age-specific genetic identities. We consider two cases: when the juvenile dispersal rate is allowed to change with maternal age and when it is not. In the latter case, we find that the unconditional evolutionarily stable dispersal rate increases when the adult survival rate increases. Two antagonistic forces act upon the evolution of age-specific dispersal rates. First, when the local age structure varies between patches of habitat, the intensity of competition between adults and juveniles in the natal patch is, on average, lower for offspring born to older senescent mothers. This selects for decreasing dispersal with maternal age. Second, offspring born to older parents are on average more related to other juveniles in the same patch and they experience a higher intensity of kin competition, which selects for increasing dispersal with maternal age. We show that the evolutionary outcome results from a balance between these two opposing forces, which depends on the amount of variance in age structure among sub-populations.  相似文献   

18.
Many features of species' biology, including life history, physiology, morphology, and ecology are tightly linked to body size. Investigation into the causes of size divergence is therefore critical to understanding the factors shaping phenotypic diversity within clades. In this study, we examined size evolution in monitor lizards (Varanus), a clade that includes the largest extant lizard species, the Komodo dragon (V. komodoensis), as well as diminutive species that are nearly four orders of magnitude smaller in adult body mass. We demonstrate that the remarkable body size disparity of this clade is a consequence of different selective demands imposed by three major habitat use patterns-arboreality, terrestriality, and rock-dwelling. We reconstructed phylogenetic relationships and ancestral habitat use and applied model selection to determine that the best-fitting evolutionary models for species' adult size are those that infer oppositely directed adaptive evolution associated with terrestriality and rock-dwelling, with terrestrial lineages evolving extremely large size and rock-dwellers becoming very small. We also show that habitat use affects the evolution of several ecologically important morphological traits independently of body size divergence. These results suggest that habitat use exerts a strong, multidimensional influence on the evolution of morphological size and shape disparity in monitor lizards.  相似文献   

19.
Both sexual selection and natural selection can influence the form of dimorphism in secondary sexual traits. Here, we used a comparative approach to examine the relative roles of sexual selection and natural selection in the evolution of sexually dimorphic coloration (dichromatism) and ornamentation in agamid lizards. Sexual dimorphism in head and body size were used as indirect indicators of sexual selection, and habitat type (openness) as an index of natural selection. We examined separately the dichromatism of body regions "exposed to" and "concealed from" visual predators, because these body regions are likely to be subject to different selection pressures. Dichromatism of "exposed" body regions was significantly associated with habitat type: males were typically more conspicuously coloured than females in closed habitats. By contrast, dichromatism of "concealed" body regions and ornament dimorphism were positively associated with sexual size dimorphism (SSD). When we examined male and female ornamentation separately, however, both were positively associated with habitat openness in addition to snout-vent length and head SSD. These results suggest that natural selection constrains the evolution of elaborate ornamentation in both sexes as well as sexual dichromatism of body regions exposed to visual predators. By contrast, dichromatism of "concealed" body regions and degree of ornament dimorphism appear to be driven to a greater degree by sexual selection.  相似文献   

20.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号