首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the major conjugate of 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues, is a poor ethylene producer, it is generally thought that MACC is a biologically inactive end product of ACC. In the present study we have shown that the capability of watercress (Nasturtium officinale R. Br) stem sections and tobacco (Nicotiana tabacum L.) leaf discs to convert exogenously applied MACC to ACC increased with increasing MACC concentrations (0.2-5 millimolar) and duration (4-48 hours) of the treatment. The MACC-induced ethylene production was inhibited by CoCl2 but not by aminoethoxyvinylglycin, suggesting that the ACC formed is derived from the MACC applied, and not from the methionine pathway. This was further confirmed by the observation that radioactive MACC released radioactive ACC and ethylene. A cell-free extract, which catalyzes the conversion of MACC to ACC, was prepared from watercress stems which were preincubated with 1 millimolar MACC for 24 hours. Neither fresh tissues nor aged tissues incubated without external MACC exhibited enzymic activity, confirming the view that the enzyme is induced by MACC. The enzyme had a Km of 0.45 millimolar for MACC and showed maximal activity at pH 8.0 in the presence of 1 millimolar MnSO4. The present study indicates that high MACC levels in the plant tissue can induce to some extent the capability to convert MACC to ACC.  相似文献   

2.
Vacuoles were isolated from Acer pseudoplatanus cells that were incubated with [14C]1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of [14C]1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) formation are consistent with the interpretation that MACC is synthesized in the cytosol, transported through the tonoplast, and accumulated in the vacuole. Twenty hours after chasing the labeled ACC with unlabeled ACC and adding 1 millimolar unlabeled MACC, all the [14C]MACC synthesized is located in the vacuole. Whole cells preloaded with [14C]MACC and then submitted to a continuous washing out, readily release their cytosolic MACC until complete exhaustion. The half-time of MACC efflux from the cytosol, calculated by the technique of compartmental analysis, is about 22 minutes. In contrast, vacuolar MACC remains sequestered within the vacuole. The transport of labeled MACC into the vacuole is stimulated by the presence of unlabeled MACC in the suspension medium, probably as a result of a reduced efflux of the labeled MACC from the cytosol into the suspending medium.  相似文献   

3.
The mechanisms involved in the transport of malate into isolated vacuoles of Catharanthus roseus (L.) cells were investigated with special reference to the effects of induced changes in membrane potential and surface charges of the tonoplast. For this purpose, thiocyanate (SCN?), a highly permeant anion often used as a membrane potential probe, was extensively exploited. In the absence of Mg-ATP, the low accumulation ratio of 14C SCN? could be related to the presence of negative charges at the outer surface of the tonoplast exerting a screening effect on the displacement of lipophilic anionic species. Nevertheless, malate was taken up continuously by vacuoles supporting the concept of a transport component which facilitates its transfer through the tonoplast. From experiments showing the pH dependence of malata uptake, it is suggested that the protonated form of the transporter is implicated in this process. Moreover, when the vacuoles are energized by Mg-ATP, the study of the equilibrium distribution of 14C SCN? indicated an inside positive membrane potential difference. Advantage was taken of these results to modulate the membrane potential with high levels of thiocyanate. The data obtained demonstrate that malate uptake results from electrophoretic movement in response to the positive potential difference.  相似文献   

4.
Malate uptake was investigated with vacuoles isolated from Catharanthus roseus cells. The uptake process showed saturation kinetics, was inhibited by organic anions, and was very strongly dependent on the pH of the medium. These data support the classical concept of an anion carrier or channel mechanism and suggest that the Hmal? form was the transported species. Moreover, malate transport was stimulated by the proton gradient across the tonoplast. The H+ translocating enzymes ATPase and PPiase are able to favour malate uptake and, in combination, exert a synergistic effect on this transfer.  相似文献   

5.
The mechanisms underlying the vacuolar retention or release of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the conjugated form of the ethylene precursor, has been studied in grape (Vitis vinifera) cells grown in vitro using the technique of compartmental analysis of radioisotope elution. Following its accumulation in the vacuole, M[2,3-14C]ACC could be released from cells when the vacuolar pH was artificially lowered by external buffers from its initial value of 6.2 to below the critical pH of 5.5. Successive release and retention of vacuolar MACC could be achieved by switching the vacuolar pH from values lower and higher than 5.5. The rate constant of efflux was highly correlated with the vacuolar pH. In plant tissues having low vacuolar pH under natural conditions, e.g. apple fruits (pH 4.2) and mung bean hypocotyls (pH 5.3), an efflux of M[2,3-14C]ACC also occurred. Its rate constant closely corresponded to the theorical values derived from the correlation established for grape cells. Evidence is presented that the efflux proceeded by passive lipophilic membrane diffusion only when MACC was in the protonated form. In contrast to other organic anions like malic acid, the mono and diionic species could not permeate the tonoplast, thus indicating the strict dependence of MACC retention upon the ionic status of the molecule and the absence of carrier-mediated efflux.  相似文献   

6.
Tomato (Lycopersicon esculentum Miller) fruit discs fed with [2,3-14C]1-aminocyclopropane-1-carboxylic acid (ACC) formed 1-malonyl-ACC (MACC) as the major conjugate of ACC in fruit throughout all ripening stages, from immature-green through the red-ripe stage. Another conjugate of ACC, γ-glutamyl-ACC (GACC), was formed only in mature-green fruit in an amount about 10% of that of MACC; conjugation of ACC into GACC was not detected in fruits at other ripening stages. No GACC formation was observed from etiolated mung bean (Vigna radiata [L.] Wilczek) hypocotyls, etiolated common vetch (Vicia sativum L.) epicotyls, or pea (Pisum sativum L.) root tips, etiolated epicotyls, and green stem tissue, where active conversion of ACC into MACC was observed. GACC was, however, formed in vitro in extracts from fruit of all ripening stages. GACC formation in an extract from red fruit at pH 7.15 was only about 3% of that at pH 8.0, the pH at which most assays were run. Our present in vivo data support the previous contention that MACC is the major conjugate of ACC in plant tissues, whereas GACC is a minor, if any, conjugate of ACC. Thus, our data do not support the proposal that GACC formation could be more important than MACC formation in tomato fruit.  相似文献   

7.
Peak levels of 1-aminocyclopropane-l-carboxylic acid (ACC) in flower parts of ageing carnations (Dianthus caryophyllus L. cv Scanea 3C) were detected 6 to 9 days after flower opening. The ethylene climacteric and the first visible sign of wilting was observed 7 days after opening. The concentration of conjugated ACC in these same tissues peaked at day three with reduction of 70% by day 4. From day 5 to day 9 all parts followed a diurnal pattern of increasing in conjugate levels 1 day and decreasing the next. Concentrations of conjugated ACC were significantly higher than those of ACC in all ageing parts. Preclimacteric petals treated with ACC or 1-(malonylamino)-cycloprane-1-carboxylic acid (MACC), started to senesce 30 to 36 hours after treatment. When petals were treated with MACC plus by 0.1 millimolar aminoethyoxyvinylglycine, premature senescence was induced, while ethylene production was suppressed relative to MACC-treated petals. Petals treated with MACC and silver complex produced ethylene, but did not senesce. The MACC-induced ethylene was inhibited by the addition of 1.0 millimolar CoC12. These results demonstrate MACC-induced senescence in preclimacteric petals. The patterns of ACC and MACC detected in the flower parts support the view that an individual part probably does not export an ethylene precursor to the remainder of the flower inducing senescence.  相似文献   

8.
Peanut seeds (Arachis hypogea L. Yue-you 551) contain 50 to 100 nanomoles per gram conjugated 1-aminocyclopropanecarboxylic acid (ACC). Based on paper chromatography, paper electrophoresis, and gas chromatography-mass spectrometry, it was verified that the major ACC conjugate was N-malonyl-ACC (MACC). Germinating peanut seeds converted [2-14C]ACC to ethylene 70 times more efficiently than N-malonyl-[2-14C]ACC; when ACC was administered, most of it was metabolized to MACC. Germinating peanut seeds produced ethylene and converted l-[3,4-14C]methionine to ethylene; this ethylene biosynthesis was inhibited by aminoethoxyvinylglycine. These data indicate that MACC occurs in peanut seeds but does not serve as the source of ethylene during germination; ethylene is, however, synthesized from methionine via ACC.  相似文献   

9.
The uptake and metabolism of sugars by suspension-cultured Catharanthusroseus cells were investigated. Substantially all the sucrosein the culture medium was hydrolyzed to glucose and fructosebefore being taken up by the cells. The activity of invertasebound to cell walls, determined in situ, was high at the earlystage of culture. Glucose was more easily taken up by the cellsthan was fructose. Tracer experiments using [U-14C]glucose and[U-14C]fructose indicated that glucose is a better precursorfor respiration than fructose, while fructose is preferentiallyutilized for the synthesis of sucrose, especially in the earlyphase of cell growth. Possible metabolic routes of sugar insuspension-cultured Catharanthus roseus cells are discussedin the context of these results. Catharanthus roseus, Madagascar periwinkle, suspension culture, sucrose, glucose, fructose, metabolism, glycolysis  相似文献   

10.
p. 186, right column line 11 ‘27.2 KBq’ change to‘37.2 MBq’ p. 187, left column line 8 ‘27.2 KBq’ change to‘37.2 MBq’ line 10 ‘13.6 KBq’ change to ‘18.6 MBq’ line 11 ‘13.6 KBq’ change to ‘18.6 MBq’ line 21 ‘89%’ change to ‘80%’ right column line 24 ‘CLC-NH4’ change to ‘CLC-NH2’ P. 189, Table 1 appeared incorrectly: it should appear as indicated.  相似文献   

11.
Abscisic acid (ABA) uptake by Amaranthus tricolor cell suspensions was found to include both a nonsaturable component and a saturable part with Km of 3.74 ± 0.43 micromolar and an apparent Vmax of 1.5 ± 0.12 nanomoles per gram per minute. These kinetic parameters as well as the uptake by intact cells at 0°C or by frozen and thawed cells, are consistent with operation of a saturable carrier. This carrier-mediated ABA uptake was partially energized by ΔpH: it increased as the external pH was lowered to pH 4.0; it decreased after the lowering of the ΔpH by the proton ionophore carbonylcyanide-m-chlorophenylhydrazone or after the altering of metabolically maintained pH gradient by metabolic inhibitors (KCN, oligomycin). The carrier is specific for ABA among the plant growth regulators tested, is unaffected by (RS)-trans-ABA and was inhibited by (S)-ABA, (R)-ABA, and also by the ABA analog LAB 173711.  相似文献   

12.
The metabolism of [2-14C]thymine, [2-14C]thymidine, [2-14C]uraciland [14C]uridine was investigated in protoplasts obtained fromsuspension cultures of Catharanthus roseus. Most of the exogenouslysupplied thymine, thymidine and uracil was degraded, and salvageof these pyrimidines accounted for 5–36 per cent of thetotal amount of 14C-labelled precursors which was metabolized.However, more than 80 per cent of the labelled uridine was utilizedfor the biosynthesis of nucleotides and nucleic acids, and therest was degraded. In contrast to the results from protoplastsof sugar cane cells in suspension culture, the data indicatethat protoplasts possess a pathway for the degradation of pyrimidines,and that the overall metabolism of these pyrimidines in protoplastsis very similar to the metabolism in the intact cells. Catharanthus roseus, madagascar periwinkle, protoplasts, pyrimidine metabolism  相似文献   

13.
14.
A new compound was isolated from leaves of peanut. Its structure was determined as o-(malonylamino)benzoic acid on the basis of physicochemical evidences.  相似文献   

15.
对长春花属的长春花(Catharanthus roseus(L.)G.Don)、白长春花(C. roseus(L.)G.Don'Albus')和黄长春花(C.roseus(L.)G.Don'Flavus')的染色体数目和核型进行了研究.结果表明,它们的核型公式均为2n=2x=16=2m 12sm 2T,均属于"3A"核型,染色体数目均为2n=16,但它们的端部和中部着丝点染色体在核型分析中的排列次序不同.  相似文献   

16.
Young leaves from Catharanthus roseus plants contain a novel N-methyltransferase which transfers the methyl group from S-adenosyl-L-methionine specifically to position 1 of (2R, 3R)-2,3-dihydro-3-hydroxytabersonine, producing the N-methylated product. The enzyme shows a high degree of specificity toward substrates containing a reduced double bond at position 2,3 of tabersonine derivatives but the more substituted N-desmethyldeacetylvindoline did not act as a substrate. The enzyme catalyses the third last step in vindorosine and vindoline biosynthesis, and is associated with chlorophyll-containing fractions in partially purified enzyme preparations. The lack of vindoline accumulation in cell suspension cultures is correlated with the lack of expression of this enzyme activity as well as that of an acetyltransferase which catalyses the last step in vindoline biosynthesis. Neither fungal elicitor treatment of cell line #615 nor transfer to alkaloid production medium resulted in expression of these two enzyme activities, nor was either enzyme activity detected in photoautotrophic or hormone autotrophic cultures. Cell lines #200, 615–767 and 916 could not be induced to produce DAT or NMT enzyme activities.  相似文献   

17.
Sakano K 《Plant physiology》1990,93(2):479-483
Upon absorption of phosphate, cultured cells of Catharanthus roseus (L.) G. Don caused a rapid alkalinization of the medium in which they were suspended. The alkalinization continued until the added phosphate was completely exhausted from the medium, at which time the pH of the medium started to drop sharply toward the original pH value. Phosphate exposure caused the pH of the medium to increase from pH 3.5 to values as high as 5.8, while the rate of phosphate uptake was constant throughout (10-17 micromoles per hour per gram fresh weight). This indicates that no apparent pH optimum exists for the phosphate uptake by the cultured cells. The amount of protons cotransported with phosphate was calculated from the observed pH change up to the maximum alkalinization and the titration curve of the cell suspension. Proton/phosphate transport stoichiometry ranged from less than unity to 4 according to the amount of phosphate applied. At low phosphate doses, the stoichiometries were close to 4, while at high phosphate doses, smaller stoichiometries were observed. This suggests that, at high phosphate doses, activation of the proton pump is induced by the longer lasting proton influx acidifying the cytoplasm. The increased H+ efflux due to the proton pump could partially compensate protons taken up via the proton-phosphate cotransport system. Thus, the H+/H2PO4 stoichiometry of the cotransport is most likely to be 4.  相似文献   

18.
Abel S  Blume B  Glund K 《Plant physiology》1990,94(3):1163-1171
We have shown that highly purified vacuoles of suspension-cultured tomato (Lycopersicon esculentum) cells contain RNA-oligonucleotides, using two different approaches to label and detect RNA: (a) in vivo labeling of cellular RNA with [5-3H]uridine, followed by preparation of vacuoles from protoplasts and by quantification of radioactively labeled material; and (b) in vitro labeling and analysis on sequencing gels of nucleic acids prepared from tomato vacuoles and their identification as RNA. The intravacuolar location of the RNA found in vacuolar preparations was concluded from analyzing for RNA intact organelles after repeated flotation steps as well as ribonuclease A treatment. About 3% of the RNA in protoplasts was localized within vacuoles, exceeding by severalfold the contribution made by contamination with unlysed protoplasts and subcellular organelles. Investigation of the size distribution of vacuolar RNA revealed an oligonucleotide pattern strikingly different from that which would arise from contaminating protoplasts; vacuolar RNA fragments are considerably shorter than 80 nucleotides. Characterization of these oligoribonucleotides (3′-phosphorylated termini; relatively rich in pyrimidines) as possible products of tomato vacuolar ribonuclease I action, and, in addition, enzymatic hydrolysis of vacuolar RNA by inherent enzyme activities in lysed vacuole preparations support the hypothesis that plant vacuoles are involved in cellular nucleolytic processes.  相似文献   

19.
The accumulation of alkaloids by protoplasts of Catharanthus roseus (L.) G. Don var. Little Bright Eye was studied to determine the specificity of uptake and the role of ion trapping in the storage of alkaloids. Accumulation of the indole alkaloids vindoline, ajmalicine, tabersonine, and vinblastine was found to be biphasic, with an initial burst of uptake followed by a slow, prolonged phase of accumulation. The concentration and pH dependence of the initial burst of uptake for vindoline suggested that uptake occurred by simple diffusion. Uptake of nicotine was monophasic, with a half life of 5.2 minutes. The accumulation ratio (Ci/Ce) for nicotine at steady state and for the initial burst of uptake for vindoline and ajmalicine suggested that accumulation was driven by the pH gradient between the vacuole and the external assay medium. The second, sustained phase of uptake of vindoline was sensitive to inhibition by either 20 millimolar NaN3 or 0.5 millimolar Cu2+. In azide-treated protoplasts, the uptake for vindoline conformed to the kinetics of simple diffusion, with a half life of 4 minutes. The second phase of uptake for ajmalicine, although sensitive to inhibition by Cu2+, was insensitive to inhibition by NaN3. The biphasic uptake of the indole alkaloids was not due to any significant metabolism. It is concluded that accumulation and storage of the indole alkaloids is due only partly to ion trapping of the alkaloids by the low pH of the vacuole lumen. In the case of vindoline, there appears to be a specific energy-requiring uptake that is not seen with nicotine (which is not endogenous to Catharanthus). Accumulation of ajmalicine appears to involve both ion trapping and an azide-insensitive component, which may be due to complexation with organic counterions and phenolics.  相似文献   

20.
Phosphatidate kinase (adenosine 5[prime]-triphosphate:phosphatidic acid phosphotransferase), a novel enzyme of phospholipid metabolism, was detected recently in the plasma membranes of suspension-cultured Catharanthus roseus cells and purified (J.B. Wissing, H. Behrbohm [1993] Plant Physiol 102: 1243-1249). In the present work the properties of phosphatidate kinase are described. The enzyme showed a pH optimum of 6.1 and an isoelectric point of 4.8, and was rather stable in the presence of its substrates. Although the kinase accepted both ATP and GTP, with Km values of about 12 and 18 [mu]M, respectively, the only lipid substrate was phosphatidic acid; neither lysophosphatidic acid nor any other lipid tested was phosphorylated. With 32P- and 14C-labeled diacylglycerol pyrophosphate, the product of the enzyme, it was shown that the kinase catalyzes a reversible reaction. The activity of the extracted enzyme depended on the presence of surfactants such as Triton X-100 or [beta]-octylglucoside, whereas deoxycholate was strongly inhibitory. Kinetic analysis with Triton X-100/phosphatidate mixed micelles performed according to the "surface dilution" kinetic model showed saturation kinetics with respect to both bulk and surface concentration of phosphatidate. The interfacial Michaelis constant for phosphatidate was determined as 0.6 mol %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号