首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Effects of gall damage by the introduced moth Epiblema strenuana on different growth stages of the weed Parthenium hysterophorus was evaluated in a field cage using potted plants with no competition and in naturally regenerated populations with intraspecific competition. Gall damage at early stages of plant growth reduced the plant height, main stem height, flower production, leaf production, and shoot and root biomass. All galled, potted plants with no competition produced flowers irrespective of the growth stage at which the plants were affected by galling, but lesser than in ungalled plants. Gall induction during early growth stages in field plants experiencing competition prevented 30% of the plants reaching flowering. However, 6% of the field plants escaped from gall damage, as their main stems were less vigorous to sustain the development of galls. Flower production per unit total plant biomass was lower in galled plants than in ungalled plants, and the reduction was more intense when gall damage was initiated at early stages of plant growth. In potted plants with no competition, the number of galls increased with the plant vigour, as the gall insects preferred more vigorous plants. But in field plants there were no relationship between gall abundance and plant vigour, as intraspecific competition enhanced the negative effects of galling by reducing the vigour of the weed.  相似文献   

2.
1. The relationship between plant traits and the frequency of attack by a stem galling midge, Neolasioptera sp. (Diptera: Cecidomyiidae), on Eremanthus erythropappus (Asteraceae) was studied. The morphological changes of the host after a galler attack and the potential effects of these changes on attacks by the next generation of gallers were analysed. The study was conducted in the Serra do Japi, São Paulo, south-eastern Brazil. 2. Galled branches were significantly longer, thicker, and had more leaves than ungalled branches. Accordingly, gall establishment was higher in the longer and more foliose branches. Hence, it is suggested that ovipositing females are maximizing their performance by selecting larger branches. 3. Galled branches were larger than ungalled branches of the same age. Two hypotheses, not necessarily exclusive, can explain this pattern: (1) the plant vigour hypothesis that the females are choosing the more vigorous, fast-growing branches, which still remain more vigorous after galling; or (2) the resource regulation hypothesis that galling increases branch growth rates, thus increasing resource quality for forthcoming conspecifics. 4. Co-occurrence frequencies of current and past generation galls showed that the likelihood of a branch being galled increased when it, or the branch from which it stemmed, had been galled before. The data indicated that this preference was conditioned by the number of previous attacks. Heavier attack intensities, such as one gall in the same branch and another in the branch from which it stemmed, decreased the probability of further galling. 5. The suggested links between herbivore attack and plant traits indicate that studies on host selection by phytophagous insects must take into account that herbivory itself may change the plant traits that are postulated to be selected by the insects.  相似文献   

3.
Abstract: To study the abundance and occurrence of herbivore insects on plants it is important to consider plant characteristics that may control the insects. In this study the following hypotheses were tested: (i) an increase of plant architecture increases species richness and abundance of gall‐inducing insects and (ii) plant architecture increases gall survival and decreases parasitism. Two hundred and forty plants of Baccharis pseudomyriocephala Teodoro (Asteraceae) were sampled, estimating the number of shoots, branches and their biomass. Species richness and abundance of galling insects were estimated per module, and mortality of the galls was assessed. Plant architecture influenced positively species richness, abundance and survival of galls. However, mortality of galling insects by parasitoids was low (13.26%) and was not affected by plant architecture, thus suggesting that other plant characteristics (a bottom‐up pressure) might influence gall‐inducing insect communities more than parasitism (a top‐down pressure). The opposite effect of herbivore insects on plant characteristics must also be considered, and such effects may only be assessed through manipulative experiments.  相似文献   

4.
Leah Flaherty  Dan Quiring 《Oikos》2008,117(11):1601-1608
Several different hypotheses attribute large variations in gall abundance and galler performance to variations in plant growth rate and/or module size. The plant vigor hypothesis (PVH) predicts that galler performance will be greatest on large, fast‐growing plant modules due to their large, rapidly dividing cells that allow them to make large galls, where survival and size of survivors are usually greater. The optimal module size hypothesis (OMSH) predicts that galler performance will be greatest on intermediate‐sized modules, based on a tradeoff between ease of gall induction on small modules and increased resource availability in large modules. Here, we evaluate predictions of the PVH and OMSH during a two‐year field study by examining gall induction and full gall development success, as well as subsequent galler performance in successfully developed galls, using a shoot galling adelgid, Adelges abietis, on white spruce Picea glauca. In addition, we tested whether increased dose of gall induction stimulus on different sized modules, achieved by observing differing A. abietis densities per bud, could increase the rate of successful gall induction, as predicted by the OMSH. Galls of A. abietis appeared to be induced by a dose‐dependent stimulus from fundatrices in spring. Furthermore, the critical stimulus dose required to induce a gall appeared to increase with shoot length. These findings support the OMSH and not the PVH. Galler performance (gall volume and the number of gallicolae that emerged from each gall) in successfully developed galls was positively related to shoot length, supporting both the PVH and OMSH. We conclude that the PVH represents one component of the more inclusive OMSH, which considers both ease of gall induction on different‐sized modules and the effect of plant module size on gall size.  相似文献   

5.
Abstract.  1. The relative importance of direct and indirect interactions in controlling organism abundance is still an unresolved question. This study investigated the role of the direct and indirect interactions involving ants, aphids, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae) on a galling herbivore Baccharopelma dracunculifoliae (Homoptera: Psyllidae).
2. The effects of these interactions on the galling herbivore's performance were evaluated by an exclusion experiment during two consecutive generations of the galling insect.
3. Ants had a direct negative effect on the performance of the galling herbivore by reducing the number of nymphs per gall. In contrast, ants had no indirect effects on gall mortality through the associated parasitoids.
4. Aphids negatively affected gall development, suggesting that galls and aphids might be partitioning photoassimilates and nutrients moving throughout host-plant tissues.
5. In addition, galls that developed during the rainy season were heavier, indicating that variation in the host plant, due to weather changes, can affect the development of B. dracunculifoliae galls. However, variation in the development of B. dracunculifoliae galls due to presence of aphids or the weather changes did not affect parasitoid attack.
6. These results suggest that direct interactions between ants and galls influenced galling insect abundance, whereas numerical indirect effects involving galling insects, ants, aphids, and host plants were less conspicuous.  相似文献   

6.
The objective of this study was to analyze the relationship between plant hosts, galling insects, and their parasitoids in a tropical dry forest at Chamela-Cuixmala Biosphere Reserve in western Mexico. In 120 transects of 30 by 5 m (60 in deciduous forest and 60 in riparian habitats), 29 galling insects species were found and represented in the following order: Diptera (Cecidomyiidae, which induced the greatest abundance of galls with 22 species; 76%), Homoptera (Psylloidea, 6.9%; Psyllidae, 6.9%; Triozidae, 3.4%), Hymenoptera (Tanaostigmatidae, 3.4%; which were rare), and one unidentified morphospecies (3.4%). In all cases, there was a great specificity between galling insect species and their host plant species; one galling insect species was associated with one specific plant species. In contrast, there was no specificity between parasitoid species and their host galling insect species. Only 11 species of parasitoids were associated with 29 galling insect species represented in the following families: Torymidae (18.2%), Eurytomidae (18.2%), Eulophidae (18.2%), Eupelmidae (9.1%), Pteromalidae (9.1%), family Braconidae (9.1%), Platygastridae (9.1%), and one unidentified (9.1%). Most parasitoid species parasitized several gall species (Torymus sp.: 51.1%, Eurytoma sp.: 49.7%, Torymoides sp.: 46.9%). Therefore, the effects of variation in plant defenses do not extend to the third trophic level, because a few species of parasitoids can determine the community structure and composition of galling insect species in tropical plants, and instead, top-down processes seem to be regulating trophic interactions of galling insect species in tropical gall communities.  相似文献   

7.
Galling insects tend to be highly sensitive to changes in their host plants or their environment. Here we analyze the effects of Chaco Serrano forest fragmentation on gall inducing species associated with four native plants species, simultaneously examining area and edge effects as well as the role of host plant availability on such effects. At edge and interior locations in each of nine forest sites in an area gradient in Central Argentina, we estimated herbivory as (1) the proportion of galled plants and (2) the number of galls per plant. Herbivory variations in relation to forest area and edge/interior locations were analyzed with generalized linear models, whereas the influence of plant availability in mediating area and edge effects was assessed by Structural Equation Models. Different responses to fragmentation were observed, depending on the insect species and also on the chosen herbivory indicator. Significant edge and area effects were detected in four and two out of ten performed models, respectively. When significant, edge effects were mostly positive and consistently direct rather than mediated by plant availability; instead, area effects varied from positive and led by plant abundance, to negative and independent of plant availability. Our study provides new evidence of a tendency for galling insects to benefit from edge conditions, while showing less consistent effects regarding forest size. Our results also suggest a very limited role for plant availability as a mechanism mediating fragmentation effects on herbivory by galling insects.  相似文献   

8.
Abstract Currently there is no single accepted hypothesis to explain gall‐forming insect species richness at a particular locality. Hygrothermal stress, soil nutrient availability, plant species richness, plant structural complexity, plant family or genus size, and host plant geographical range size have all been implicated in the determination of gall‐forming insect species richness. Previous studies of such richness at xeric sites have included predominantly scleromorphic vegetation, usually on nutrient‐poor soils. This study is the first to investigate gall‐forming insect species richness of xeric, non‐scleromorphic vegetation. Two habitat types were sampled at each of five localities across a rainfall gradient in the savanna biome of South Africa. The habitat types differed with respect to plant species composition and topography. Gall‐forming insect species richness did not increase with increasing hygrothermal stress or decreasing soil fertility. Rather, gall‐forming insect species richness was largely dependent on the presence of Terminalia sericea as well as other members of the Combretaceae and Mimosaceae. Plots where all these taxa were present had the highest gall‐forming insect species richness, up to 15 species, whereas plots with none of these taxa had a maximum of four galling‐insect species. Despite herb, shrub and tree strata not differing in gall‐forming insect species richness, insect galls were more common on woody than non‐woody plants. Also, stem galls were more frequent than apical or leaf galls. An alternative hypothesis to explain local gall‐forming insect species richness is suggested: galling insects may preferentially select those plant species with characteristics such as chemical toxicity, mechanical strength, degree of lignification or longevity that can be manipulated to benefit the galler. Thus plant community composition should be considered when attempting to explain gall‐forming insect species richness patterns.  相似文献   

9.
Plant stress and larval performance of a dipterous gall former   总被引:2,自引:0,他引:2  
L. De Bruyn 《Oecologia》1995,101(4):461-466
According to the plant vigour hypothesis, galling insects should respond positively and perform better on vigorous plants or plant parts, the opposite of the predictions of the plant stress hypothesis. I carried out field experiments to analyse the effects of sustained abiotic stress on the interactions between the common reed (Phragmites australis) and a gall-forming fly (Lipara lucens). The reed shoot diameter (a measure of plant vigour) is strongly affected by environmental conditions, where dry and/or nutrient-poor habitats produce thinner (stressed) shoots. L. lucens gall density is negatively correlated with shoot diameter. In a survival experiment with a wide range of shoot diameters, larval mortality was also highly correlated with shoot quality. Gall formation was higher on thinner, stressed shoots. An analysis of the gall tissues revealed that galls induced by L. lucens contain a high amount of a nutrient-rich feeding tissue. The impact of L. lucens is higher on thinner shoots. The results of this study showed that L. lucens performs better on stressed hosts, which contradicts the plant vigour hypothesis for galling insects. The low nutrient availability in the stressed shoots can be compensated by the production of galls with a nutrient-rich feeding tissue.  相似文献   

10.
Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions.  相似文献   

11.
The plant stress and plant vigor hypotheses (PVH) are two of the most widely recognized hypothesis invoked to explain differential distribution of insect herbivores among their host plants. In both cases, the emphasis is on bottom–up processes (i.e. host-plant quality), but a recent meta-analytical review of the literature has shown that the plant stress hypothesis might have limited support among insect herbivores. In this study, we conducted a meta-analysis of the effects of plant vigor on insect herbivore abundance and survivorship by reviewing 71 published articles that explicitly tested the PVH and enabled 161 independent comparisons. Z-transform was used as the metric to standardize the results of all independent comparisons. Our quantitative results have shown that Hymenoptera (sawflies) was the most abundant group in the reviewed studies, representing 28.1% of the independent comparisons, followed by Diptera (25.1%) and Homoptera (22.6%). Amongst all the guilds studied, gall-formers were the most representative group (68.0%), whereas leaf-miners and stem-borers were underrepresented (less than 4.0% of the available comparisons). Insect herbivores were significantly more abundant on more vigorous plants (E++=0.6432, CI=0.7558–0.7280), but no significant effect was detected on herbivore survivorship. When herbivores were categorized into feeding guilds, effects of plant vigor on herbivore abundance were stronger for sap-suckers, leaf-miners and gall-formers. Our results have shown a strong herbivore preference for more vigorous plants, although our results do not support a preference–performance linkage.  相似文献   

12.
Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae) host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiania, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior) were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i) because of their host-specificity, (ii) they are sensitive to changes in plant quality, and (iii) present dissimilar and specific responses to local variation in habitat conditions.  相似文献   

13.
14.
Plant–insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the rosette gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3–34%). Aboveground biomass of galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant–insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant–insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.  相似文献   

15.
Plant species diversity maintains the stability of ecosystems and the diversity of consumer species such as insect herbivores. Considering that gall-inducing insects are highly specialized on their host plants and dependent on the occurrence, abundance and distribution of plants, we evaluated the diversity patterns of gall-inducing insect along Brazilian Neotropical savannas and the potential role of plant species richness, vegetation structure and super-host presence on determining these patterns. We found 1,882 individual plants that belonged to 64 different host plant species grouped in 31 families, associated to 112 galling insect species. The galling richness was positively influenced by plant species richness and the presence of the super-host genus Qualea (Vochysiaceae). Plant species richness explained 48 % of the galling richness and areas with presence of super-hosts had more than twice of galling species than areas where they were absent. On the other hand, we found no evidence that larger plants hosted more species of galling insects. We observed that for the diversity of galling insects in the Brazilian Cerrado, vegetation structure explained almost the same portion as plant richness, because structural variables did not have an effect on residuals of galling richness and plant richness regression. Our findings suggests that plant richness has a more important role on the mitigation of natural enemies and adaptive radiation of galling species, while structural aspects of the vegetation does not seem to have that effect. Furthermore, we show that the super-host taxa provide an increment in local galling richness because they present a great diversity of local number of gall morphospecies (i.e. alpha diversity) and the high turnover of morphospecies among different localities (i.e. beta diversity). Therefore we argue that the quality of resources (richness and super host presence) appears to be a most important factor for the diversity of galling insects in Neotropical systems, than the amount of resources.  相似文献   

16.
1. Insect galls are abnormal plant growths that develop in response to a stimulus provided by a galling insect. The nutrition hypothesis suggests that the concentrations of nutritive compounds in galls are changed to provide optimum nutrition for the larvae and adults of galling insects. 2. To test the nutrition hypothesis, we determined the concentrations of 20 free amino acids in galls and in galled and ungalled twigs of Quercus fabri during the larval and adult stages of Andricus mukaigawae using high-performance liquid chromatography with ultraviolet–visible detection. 3. At the larval stage, the concentrations of 12 out of 20 amino acids in A. mukaigawae galls were significantly higher than those in galled and ungalled twigs. Asparagine and tryptophan were the most abundant nonessential and essential amino acids, respectively, in A. mukaigawae galls. 4. At the adult stage, the concentrations of most amino acids, except proline, were significantly lower in A. mukaigawae galls than in galled and ungalled twigs. The A. mukaigawae adults may not manipulate amino acid levels because the adults do not feed on galls. The decrease of amino acid levels in adult galls may be viewed as a depletion. 5. The composition of free amino acids in A. mukaigawae galls was significantly different from the composition in galled and ungalled twigs in both the larval and adult stages. 6. Our results may support the nutrition hypothesis. We suggest that a high concentration of proline in A. mukaigawae galls may protect larvae and adults from plant defense responses.  相似文献   

17.
Hypersensitivity is known as a localized resistance of plants against pathogens. It also can be detected in response to galling insects, i.e., in the area immediately adjacent to the site of oviposition and attempted penetration by the galling larva. This host response includes morphological and histological changes that cause the death of the attacked tissue. It is observed as a rounded dark brown halo around the gall induction site. We provide the first observation on the occurrence and possible relevance of this induced mechanism by which one of the most common tree species in Germany, Fagus sylvatica L., resists attack by two of its most common galling insects, Mikiola fagi and Hartigiola annulipes (Diptera: Cecidomyiidae). Galls induced by these cecidomyiids were extremely common in the studied area in beech forests around Darmstadt, Germany. The availability of resources (leaves on a stem) was a poor predictor of attack by the galling insects as well as for gall abundance (galls successfully formed). Hypersensitive reaction was the most important factor acting against the galling population studied. More than 77% of the attempts of the insects to induce galls on F. sylvatica resulted in failure and consequently the death of the galling larvae. Therefore, few live galls remained to be found and destroyed by natural enemies. This corroborates the view that in galling insect–host plant system interactions plant-driven factors may play a major role in determining herbivore failure and success, and perhaps the resulting community structure.  相似文献   

18.
Plant architecture is considered to affect herbivory intensity, but it is one of the least studied factors in plant–insect interactions, especially for gall-inducing insects. This study aimed to investigate the influence of plant architecture on the speciose fauna of gall-inducing insects associated with 17 species of Baccharis. Five architectural variables were evaluated: plant height, number of fourth-level shoots, biomass, average level and number of ramifications. The number of galling species associated with each host plant species was also determined. To test the effects of plant architecture on gall richness at the individual level, we used another data set where the number of fourth-level shoots and gall richness were determined for B. concinna, B. dracunculifolia, and B. ramosissima every 3 weeks during 1 year. The average similarity between host species based on gall fauna was low (9%), but plants with the same architectural pattern tended to support similar gall communities. The most important architectural trait influencing gall richness at the species level was the number of fourth-level shoots, which is indicative of the availability of plant meristems, a fundamental tissue for gall induction and development. This variable also showed a positive correlation with gall richness at the individual level. We propose that variations in gall richness among host species are driven by interspecific differences in plant architecture via availability of young, undifferentiated tissue, which is genetically controlled by the strength of the apical dominance. Plant architecture should have evolutionary consequences for gall communities, promoting insect radiation among architecturally similar plants through host shift and sympatric speciation. We also discuss the role of plant architecture in the global biogeography of gall-inducing insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

20.
The plant stress hypothesis suggests that some herbivores favour stressed plants, whereas the plant vigour hypothesis proposes that other herbivores prefer vigorous plants. The effects of a prior stress, that of frost damage, were examined on the subsequent growth of Eucalyptus globulus globulus and on the response of insect herbivores. Frost damage affected tree growth by reducing new leaf area and increasing specific leaf area (SLA). However, herbivore abundance was not affected by prior frost damage. Two feeding trials using Anoplognathus chloropyrus and Hyalarcta huebneri and a morphometric study of Ctenarytaina eucalypti were conducted to assess the performance of herbivores on trees that had suffered more or less frost damage. Consumption by A. chloropyrus and H. huebneri was unaffected by foliage origin (damaged versus healthy). Hyalarcta huebneri grew faster when fed leaves from previously damaged trees, and C. eucalypti from previously damaged trees were larger than those from healthy trees. Enhanced insect performance on frost damaged plants may have resulted from the high specific leaf area (most likely thinner) leaves. The herbivore abundance data did not support the hypothesis that previously frost damaged plants are preferred by insects. However, increased growth of H. huebneri and larger body size of C. eucalypti on damaged trees indicates that previously stressed trees may produce leaves of higher nutritional value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号