首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic locus from Acetobacter xylinum involved in acetan polysaccharide synthesis has been characterized. The chromosomal region was identified by screening a genomic library of A. xylinum in a Xanthomonas campestris mutant defective in xanthan polysaccharide synthesis. The A. xylinum cosmid clone can functionally complement a xanthan-negative mutant. The polymer produced by the recombinant strain was found to be indistinguishable from xanthan. Insertion mutagenesis and subcloning of the cosmid clone combined with complementation studies allowed the identification of a 2.3-kb fragment of A. xylinum chromosomal DNA. The nucleotide sequence of this fragment was analyzed and found to contain an open reading frame (aceA) of 1,182 bp encoding a protein of 43.2 kDa. Results from biochemical and genetic analyses strongly suggest that the aceA gene encodes the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase enzyme, which is responsible for the transfer of an alpha-mannosyl residue from GDP-Man to cellobiosyl-diphosphopolyprenol. A search for similarities with other known mannosyltransferases revealed that all bacterial alpha-mannosyltransferases have a short COOH-terminal amino acid sequence in common.  相似文献   

2.
A structural gene for isocitrate lyase was isolated from a cosmid containing an ace locus of the Escherichia coli chromosome. Cloning and expression under control of the tac promoter in a multicopy plasmid showed that a 1.7-kilobase-pair DNA segment was sufficient for complementation of an aceA deletion mutation and overproduction of isocitrate lyase. DNA sequence analysis of the cloned gene and N-terminal protein sequencing of the cloned and wild-type enzymes revealed an entire aceA gene which encodes a 429-amino-acid residue polypeptide whose C-terminus is histidine. The deduced amino acid sequence for the 47.2-kilodalton subunit of E. coli isocitrate lyase could be aligned with that for the 64.8-kilodalton subunit of the castor bean enzyme with 39% identity except for limited N- and C-terminal regions and a 103-residue stretch that was unique for the plant enzyme and started approximately in the middle of that peptide.  相似文献   

3.
The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.  相似文献   

4.
Acetobacter xylinum BPR2001 produces water-insoluble bacterial cellulose (BC) and a water-soluble polysaccharide called acetan in corn steep liquor-fructose medium. Acetobacter xylinum EP1, which is incapable of acetan production was derived by disrupting the aceA gene of BPR2001. The BC production by EP1 (2.88 g/L) was lower than that by BPR2001 (4.6 g/L) in baffled-flask culture. When purified acetan or agar was added to the medium from the start of cultivation, the BC production by EP1 was enhanced and the final BC yield of EP1 was almost the same as that of BPR2001. A similar improvement of BC production by EP1 by the addition of agar was also confirmed by cultivation in a 50-L airlift reactor. From these results, the role of acetan in BC production is associated with the increase in the viscosity of the culture medium which may hinder coagulation of BC and cells in the culture, thereby accelerating the growth of BPR2001 and BC production by BPR2001.  相似文献   

5.
Acetan is a water-soluble polysaccharide produced by a bacterial cellulose (BC) producer, Acetobacter xylinum. An acetan-nonproducing mutant, EP1, was generated from wild-type A. xylinum BPR2001 by the disruption of aceA, which may act to catalyze the first step of the acetan biosynthetic pathway in this bacterium. EP1 produced less BC than the wild-type strain. However, when EP1 was cultured in a medium containing acetan, BC production was stimulated and the final yield of BC was equivalent to that of BPR2001. The culture broth containing acetan was more viscous and the free cell number was higher than that of the broth without the polysaccharide, so acetan may hinder the coagulation of BC in the broth. The addition of 1.5 g/l agar also increased BC production; we concluded that acetan and BC syntheses were not directly related on the genetic level.  相似文献   

6.
The levansucrase gene (lsxA) was cloned from the genomic DNA of Acetobacter xylinum NCI 1005, and the nucleotide sequence of the lsxA gene (1,293 bp) was determined. The deduced amino acid sequence of the lsxA gene showed 57.4% and 46.2% identity with the levansucrases from Zymomonas mobilis and Erwinia amylovora, respectively, while only 35.2% identity with that from Acetobacter diazotrophicus. The gene product of lsxA (LsxA) that was overproduced in E. coli coded for a polypeptide of molecular mass 47 kDa. The LsxA released glucose and produced polysaccharide from sucrose, the structure of which was analyzed by nuclear magnetic resonance spectroscopy and determined to be a beta-(2,6)-linked polyfructan.  相似文献   

7.
An insertion sequence (IS) element, IS1031, caused insertions associated with spontaneous cellulose deficient (Cel-) mutants of Acetobacter xylinum ATCC 23769. The element was discovered during hybridization analysis of DNAs from Cel- mutants of A. xylinum ATCC 23769 with pAXC145, an indigenous plasmid from a Cel- mutant of A. xylinum NRCC 17005. An IS element, IS1031B, apparently identical to IS1031, was identified on pAXC145. IS1031 is about 950 bp. DNA sequencing showed that the two elements had identical termini with inverted repeats of 24 bp containing two mismatches and that they generated 3-bp target sequence duplications. The A. xylinum ATCC 23769 wild type carries seven copies of IS1031. Southern hybridization showed that 8 of 17 independently isolated spontaneous Cel- mutants of ATCC 23769 contained insertions of an element homologous to IS1031. Most insertions were in unique sites, indicating low insertion specificity. Significantly, two insertions were 0.5 kb upstream of a recently identified cellulose synthase gene. Attempts to isolate spontaneous cellulose-producing revertants of these two Cel- insertion mutants by selection in static cultures were unsuccessful. Instead, pseudorevertants that made waxlike films in the liquid-air interface were obtained. The two pseudorevertants carried new insertions of an IS1031-like element in nonidentical sites of the genome without excision of the previous insertions. Taken together, these results suggest that indigenous IS elements contribute to genetic instability in A. xylinum. The elements might also be useful as genetic tools in this organism and related species.  相似文献   

8.
9.
10.
A second cellulose synthase gene (acsAII) coding for a 175-kDa polypeptide that is similar in size and sequence to the acsAB gene product has been identified in Acetobacter xylinum AY201. Evidence for the presence of this gene was obtained during analysis of A. xylinum mutants in which the acsAB gene was disrupted (I.M. Saxena, K. Kudlicka, K. Okuda, and R.M. Brown, Jr., J. Bacteriol. 176:5735-5752, 1994). Although these mutants produced no detectable cellulose, they exhibited significant cellulose synthase activity in vitro. The acsAII gene was isolated by using an acsAB gene fragment as a probe. The acsAII gene coded for cellulose synthase activity as determined from sequence analysis and study of mutants in which this gene was disrupted. A mutant in which only the acsAII gene was disrupted showed no significant differences in either the in vivo cellulose production or the in vitro cellulose synthase activity compared with wild-type cells. Mutants in which both the acsAII and acsAB genes were disrupted produced no cellulose in vivo and exhibited negligible cellulose synthase activity in vitro, thus confirming that the cellulose synthase activity observed in the acsAB mutants was coded by the acsAII gene. These results establish the presence of an additional gene for cellulose synthase expressed in cells of A. xylinum, yet this gene is not required for cellulose production when cells are grown under laboratory conditions.  相似文献   

11.
G Brede  E Fjaervik    S Valla 《Journal of bacteriology》1991,173(21):7042-7045
The nucleotide sequence of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene was determined; this is the first procaryotic uridine diphosphoglucose pyrophosphorylase gene sequence reported. The sequence data indicated that the gene product consists of 284 amino acids. This finding was consistent with the results obtained by expression analysis in vivo and in vitro in Escherichia coli.  相似文献   

12.
Genetic analysis of Acetobacter xylinum, a cellulose-synthesizing bacterium, has been limited by lack of a successful transformation method. Transformation of A. xylinum was attempted using two broad-host-range plasmids (pUCD2 and pRK248) and a variety of transformation methods. Methods using CaCl2, freeze/thaw treatments, and polyethylene glycol were unsuccessful. Transformation of a cellulose-negative strain of A. xylinum with plasmid DNA has been achieved with high-voltage electroporation. Electroporation conditions of 25 microF capacitance, 2.5 kV, 400 ohms resistance, and pulse lengths of 6-8 ms were applied to a cell/DNA mixture in a 0.2-cm cuvette. Plasmid pUCD2 transformed at an efficiency of 10(6)-10(7) transformants/micrograms DNA and pRK248 yielded 10(5) transformants/micrograms DNA. The frequency of transformation increased linearly with increasing DNA concentration, while transformation efficiency remained constant. pUCD2 was recovered from transformants following chloramphenicol amplification and observed by agarose gel electrophoresis. Both plasmids could be reisolated from Escherichia coli after back-transformation with alkaline lysis DNA preparations from Acetobacter transformants. Electro-transformation of A. xylinum with plasmid DNA suggests its potential use for analysis of the A. xylinum genome.  相似文献   

13.
Abstract The 16S-23S ribosomal RNA spacer regions of Acetobacter europaeus DSM 6160, A. xylinum NCIB 11664 and A. xyUnion CL27 were amplified by PCR. Specific PCR products were obtained from each strain and their nucleotide sequences determined. The spacer region of A. europaeus comprises 768 nucleotides (nt), that of A. xylinum 778 nt and that of A. xylinum CL27 759 nt. Genes encoding tRNAIle and tRNAAla were identified. Putative antitermination sequences were found between the tRNAAla sequence and the 5'-terminus of the 23S rRNA coding sequence. The boxA element has the nucleotide sequence TGCTCTTTGATA. Based on hybridization data of digested chromosomal DNA with spacer-specific probes, the copy number of the rrn operons on the chromosome of Acetobacter strains is estimated to be four.  相似文献   

14.
15.
Pseudomonas aeruginosa PAO1 mutants affected in acyclic monoterpenes, n-octanol, and acetate assimilation were isolated using transposon mutagenesis. The isocitrate lyase gene (aceA) corresponding to ORF PA2634 of the PAO1 strain genome was identified in one of these mutants. The aceA gene encodes a protein that is 72% identical to the isocitrate lyase (ICL) characterized from Colwellia maris, but is less than 30% identical to their homologues from pseudomonads. The genetic arrangement of aceA suggests that it is a monocistronic gene, and no adjacent related genes were found. The ICL protein was detected as a 60-kDa band in sodium dodecyl sulfate polyacrylamide gel electrophoresis from cultures grown on acetate, but not in glucose-grown PAO1 cultures. Genetic complementation further confirmed that the aceA gene encodes the ICL enzyme. The ICL enzyme activity in crude extracts from cultures of the PAO1 strain was induced by acetate, citronellol and leucine, and repressed by growth on glucose or citrate. These results suggest that ICL is involved in the assimilation of acetate, acyclic monoterpenes of the citronellol family, alkanols, and leucine, in which the final intermediary acetyl-coenzyme A may be channelled to the glyoxylate shunt.  相似文献   

16.
Analysis of the nucleotide sequence of a 1592 bp region of Acetobacter xylinum genomic DNA involved in acetan biosynthesis revealed the presence of an open-reading frame (aceM) encoding a protein of 449 amino acids with a molecular weight of 48.5 kDa. The deduced amino acid sequence of aceM displayed high homology to the protein sequences of genes encoding UDP-glucose dehydrogenase (UGDH) activities from other organisms. AceM is likely to encode the UGDH involved in the biosynthesis of UDP-glucuronic acid required for acetanbiosynthesis. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
Isocitrate lyase is a key enzyme in the glyoxylate cycle and is essential as an anaplerotic enzyme for growth on acetate as a carbon source. It is assumed to be of major importance in carbon flux control in the amino acid-producing organism Corynebacterium glutamicum. In crude extracts of C. glutamicum, the specific activities of isocitrate lyase were found to be 0.01 U/mg of protein after growth on glucose and 2.8 U/mg of protein after growth on acetate, indicating tight regulation. The isocitrate lyase gene, aceA, was isolated, subcloned, and characterized. The predicted gene product of aceA consists of 432 amino acids (M(r), 47,228) and shows up to 57% identity to the respective enzymes from other organisms. Downstream of aceA, a gene essential for thiamine biosynthesis was identified. Overexpression of aceA in C. glutamicum resulted in specific activities of 0.1 and 7.4 U/mg of protein in minimal medium containing glucose and acetate, respectively. Inactivation of the chromosomal aceA gene led to an inability to grow on acetate and to the absence of any detectable isocitrate lyase activity. Isocitrate lyase was purified to apparent homogeneity and subjected to biochemical analysis. The native enzyme was shown to be a tetramer of identical subunits, to exhibit an ordered Uni-Bi mechanism of catalysis, and to be effectively inhibited by 3-phosphoglycerate, 6-phosphogluconate, phosphoenolpyruvate, fructose-1,6-bisphosphate, and succinate.  相似文献   

18.
In Escherichia coli, the phosphorylation and dephosphorylation of isocitrate dehydrogenase (IDH) are catalyzed by a bifunctional protein kinase/phosphatase. We have determined the nucleotide sequence of aceK, the gene encoding IDH kinase/phosphatase. This gene consists of a single open reading frame of 1,734 base pairs preceded by a Shine-Dalgarno ribosome-binding site. Examination of the deduced amino acid sequence of IDH kinase/phosphatase revealed sequences which are similar to the consensus sequence for ATP-binding sites. This protein did not, however, exhibit the extensive sequence homologies which are typical of other protein kinases. Multiple copies of the REP family of repetitive extragenic elements were found within the intergenic region between aceA (encoding isocitrate lyase) and aceK. These elements have the potential for combining to form an exceptionally stable stem-loop structure (delta G = -54 kcal/mol [ca. -226 kJ/mol]) in the mRNA. This structure, which masks the ribosome-binding site and start codon for aceK, may contribute to the downshift in expression observed between aceA and aceK. Another potential stem-loop structure (delta G = -29 kcal/mol [ca. 121 kJ/mol]), unrelated to the REP sequences, was found within aceK.  相似文献   

19.
20.
Three sets of cellulose synthase genes were cloned from a cellulose-producing bacterium Acetobacter xylinum JCM 7664. One set of genes (bcsAI/bcsBI/bcsCI/bcsDI) were highly conserved with the well-established type I genes in other strains of A. xylinum, while the other two (bcsABII-A, bcsABII-B) were homologous to the known type II (acsAII). Unexpectedly, they were immediately followed by a gene cluster of bcsX/bcsY/bcsCII/ORF569, likely forming an operon. Western blotting demonstrated that the BcsY protein accumulated in cells. Since BcsY showed striking similarities to a number of membrane-bound transacylases, it was hypothesized that the type II cellulose synthase produces acylated cellulose, which might be anchored on the cytoplasmic membrane. An insertion sequence of IS1380-type was found just upstream of the one type II gene (bcsABII-B), suggestive of nonfunctioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号