首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coryneform bacterium designated Microbacterium nematophilum has previously been reported to act as a pathogen for Caenorhabditis elegans. This bacterium is able to colonize the rectum of infected worms and cause localized swelling, constipation and slowed growth. Additional isolates and analysis of this bacterium are described here. Tests of pathogenicity on other Caenorhabditis nematodes show that M. nematophilum infection is lethal to most species in the genus, in contrast to its relatively mild effects on C. elegans. The size and geometry of the pathogen genome have been determined as a closed circular molecule of 2.85 Mb with high G+C content. Bacteria also harbor a 55 kb plasmid, pMN1, which is largely composed of a lysogenic bacteriophage genome. Mutagenesis experiments have yielded stable avirulent mutants of M. nematophilum. As a first step towards molecular genetic analysis, methods for low-efficiency transformation of M. nematophilum have been developed.  相似文献   

2.
The Dar (deformed anal region) phenotype, characterized by a distinctive swollen tail, was first detected in a variant strain of Caenorhabditis elegans which appeared spontaneously in 1986 during routine genetic crosses [1,2]. Dar isolates were initially analysed as morphological mutants, but we report here that two independent isolates carry an unusual bacterial infection different from those previously described [3], which is the cause of the Dar phenotype. The infectious agent is a new species of coryneform bacterium, named Microbacterium nematophilum n. sp., which fortuitously contaminated cultures of C. elegans. The bacteria adhere to the rectal and post-anal cuticle of susceptible nematodes, and induce substantial local swelling of the underlying hypodermal tissue. The swelling leads to constipation and slowed growth in the infected worms, but the infection is otherwise non-lethal. Certain mutants of C. elegans with altered surface antigenicity are resistant to infection. The induced deformation appears to be part of a survival strategy for the bacteria, as C. elegans are potentially their predators.  相似文献   

3.
During the establishment of a bacterial infection, the surface molecules of the host organism are of particular importance, since they mediate the first contact with the pathogen. In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis. We cloned srf-3 and found that it encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi apparatus membrane. srf-3 is exclusively expressed in secretory cells, consistent with its proposed function in cuticle/surface modification. We demonstrate that SRF-3 can function as a nucleotide sugar transporter in heterologous in vitro and in vivo systems. UDP-galactose and UDP-N-acetylglucosamine are substrates for SRF-3. We propose that the inability of Yersinia biofilms and M. nematophilum to adhere to the nematode cuticle is due to an altered glycoconjugate surface composition of the srf-3 mutant.  相似文献   

4.
5.
Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA) in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP) kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host-pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation.  相似文献   

6.
The Pseudomonas aeruginosa type III secretion system (TTSS), enabling direct injection of toxins into host cells, has been shown to be crucial to virulence in several models of P. aeruginosa pathogenesis. Using the strain PA14 and its isogenic mutant, PA14exsA, we investigated the role of the TTSS during infection of the nematode Caenorhabditis elegans. Although C. elegans N2 was killed by PA14 in an infection like process over 48 to 72 h the same effect was observed following infection with PA14exsA, implying that a functional TTSS was not essential for virulence. This was despite the TTSS being actively expressed during C. elegans infection as demonstrated by the use of green fluorescent reporter constructs and RT-PCR. However, compared to the wild type PA14, PA14exsA did display a reduced rate of killing of C. elegans strain AU1 which harbours a mutation in the sek-1 gene encoding a MAP kinase involved in nematode innate immunity. A fuller understanding of the mechanism of resistance to type III attack in C. elegans may lead to the identification and development of novel therapeutic targets affording protection to TTSS products in man.  相似文献   

7.
srf-3 is a mutant of C. elegans that is resistant to infection by Microbacterium nematophilum and to binding of the biofilm produced by Yersinia pseudotuberculosis and Yersinia pestis. Recently, SRF-3 was characterized as a nucleotide sugar transporter of the Golgi apparatus occurring exclusively in hypodermal seam cells, pharyngeal cells, and spermatheca. Based on the above observations, we hypothesized that srf-3 may have altered glyconjugates that may enable the mutant nematode to grow unaffected in the presence of the above pathogenic bacteria. Following analyses of N- and O-linked glycoconjugates of srf-3 and wild type nematodes using a combination of enzymatic degradation, permethylation, and mass spectrometry, we found in srf-3 a 65% reduction of acidic O-linked glycoconjugates containing glucuronic acid and galactose as well as a reduction of N-linked glycoconjugates containing galactose and fucose. These results are consistent with the specificity of SRF-3 for UDP-galactose and strongly suggest that the above glycoconjugates play an important role in allowing adhesion of M. nematophilum or Y. pseudotuberculosis biofilm to wild type C. elegans. Furthermore, because seam cells as well as pharyngeal cells secrete their glycoconjugates to the cuticle and surrounding surfaces, the results also demonstrate the critical role of these cells and their secreted glycoproteins in nematode-bacteria interactions and offer a mechanistic basis for strategies to block such recognition processes.  相似文献   

8.
BACKGROUND: In many animals, the epidermis is in permanent contact with the environment and represents a first line of defense against pathogens and injury. Infection of the nematode Caenorhabditis elegans by the natural fungal pathogen Drechmeria coniospora induces the expression in the epidermis of antimicrobial peptide (AMP) genes such as nlp-29. Here, we tested the hypothesis that injury might also alter AMP gene expression and sought to characterize the mechanisms that regulate the innate immune response. RESULTS: Injury induces a wound-healing response in C. elegans that includes induction of nlp-29 in the epidermis. We find that a conserved p38-MAP kinase cascade is required in the epidermis for the response to both infection and wounding. Through a forward genetic screen, we isolated mutants that failed to induce nlp-29 expression after D. coniospora infection. We identify a kinase, NIPI-3, related to human Tribbles homolog 1, that is likely to act upstream of the MAPKK SEK-1. We find NIPI-3 is required only for nlp-29 induction after infection and not after wounding. CONCLUSIONS: Our results show that the C. elegans epidermis actively responds to wounding and infection via distinct pathways that converge on a conserved signaling cassette that controls the expression of the AMP gene nlp-29. A comparison between these results and MAP kinase signaling in yeast gives insights into the possible origin and evolution of innate immunity.  相似文献   

9.
Interactions with bacteria play a major role in immune responses, ecology, and evolution of all animals, but they have been neglected until recently in the case of C. elegans. We report a genetic investigation of the interaction of C. elegans with the nematode-specific pathogen Microbacterium nematophilum, which colonizes the rectum and causes distinctive tail swelling in its host. A total of 121 mutants with altered response to infection were isolated from selections or screens for a bacterially unswollen (Bus) phenotype, using both chemical and transposon mutagenesis. Some of these correspond to known genes, affecting either bacterial adhesion or colonization (srf-2, srf-3, srf-5) or host swelling response (sur-2, egl-5). Most mutants define 15 new genes (bus-1-bus-6, bus-8, bus-10, bus-12-bus-18). The majority of these mutants exhibit little or no rectal infection when challenged with the pathogen and are probably altered in surface properties such that the bacteria can no longer infect worms. A number have corresponding alterations in lectin staining and cuticle fragility. Most of the uninfectable mutants grow better than wild type in the presence of the pathogen, but the sur-2 mutant is hypersensitive, indicating that the tail-swelling response is associated with a specific defense mechanism against this pathogen.  相似文献   

10.
The p38 mitogen-activated protein kinase (MAPK) plays an evolutionarily conserved role in the cellular response to microbial infection and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. In the Caenorhabditis elegans, the p38 MAPK (also called PMK-1) signaling pathway has been shown to be required in its resistance to bacterial infection. However, how different upstream MAP2Ks and MAP3Ks specifically contribute to the activation of PMK-1 in response to bacterial infection still is not clearly understood. By using double-stranded RNA-mediated interference (RNAi) and genetic mutants of C. elegans, we demonstrate that C. elegans MOM-4, a mammalian TAK1 homolog, is required for the resistance of C. elegans to a P. aeruginosa infection. We have also found that the MKK-4 of C. elegans is required for P. aeruginosa resistance, but not through the regulation of DLK-1. In summary, our results indicate that different upstream MAPKKKs or MAPKKs regulate the activation of PMK-1 in response to P. aeruginosa.  相似文献   

11.
Kim S  Shin Y  Shin Y  Park YS  Cho NJ 《Molecules and cells》2008,25(4):504-509
Three G-protein-linked acetylcholine receptors (GARs) exist in the nematode C. elegans. GAR-3 is pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs). We observed that carbachol stimulated ERK1/2 activation in Chinese hamster ovary (CHO) cells stably expressing GAR-3b, the predominant alternatively spliced isoform of GAR-3. This effect was substantially reduced by the phospholipase C (PLC) inhibitor U73122 and the protein kinase C (PKC) inhibitor GF109203X, implying that PLC and PKC are involved in this process. On the other hand, GAR-3b-mediated ERK1/2 activation was inhibited by treatment with forskolin, an adenylate cyclase (AC) activator. This inhibitory effect was blocked by H89, an inhibitor of cAMP-dependent protein kinase A (PKA). These results suggest that GAR-3b-mediated ERK1/2 activation is negatively regulated by cAMP through PKA. Together our data show that GAR-3b mediates ERK1/2 activation in CHO cells and that GAR-3b can couple to both stimulatory and inhibitory pathways to modulate ERK1/2.  相似文献   

12.
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation.  相似文献   

13.
Ashrafi K 《Cell metabolism》2006,3(4):235-236
What are the pathways that underlie the coordinated responses of an organism to well-fed and food-deprived states? A report in this issue of Cell Metabolism suggests that starvation functions via a muscarinic acetylcholine receptor to activate MAP kinase signaling in the pharyngeal muscle of C. elegans (You et al., 2006).  相似文献   

14.
15.
Expression of an activated extracellular signal-regulated kinase 1 (ERK1) construct in yeast cells was used to examine the conservation of function among mitogen-activated protein (MAP) kinases. Sequence alignment of the human MAP kinase ERK1 with all Saccharomyces cerevisiae kinases reveals a particularly strong kinship with Kss1p (invasive growth promoting MAP kinase), Fus3p (pheromone response MAP/ERK kinase), and Mpk1p (cell wall remodeling MAP kinase). A fusion protein of constitutively active human MAP/ERK kinase 1 (MEK) and human ERK1 was introduced under regulated expression into yeast cells. The fusion protein (MEK/ERK) induced a filamentation response element promoter and led to a growth retardation effect concomitant with a morphological change resulting in elongated cells, bipolar budding, and multicell chains. Induction of filamentous growth was also observed for diploid cells following MEK/ERK expression in liquid culture. Neither haploids nor diploids, however, showed marked penetration of agar medium. These effects could be triggered by either moderate MEK/ERK expression at 37 degrees C or by high level MEK/ERK expression at 30 degrees C. The combination of high level MEK/ERK expression and 37 degrees C resulted in cell death. The deleterious effects of MEK/ERK expression and high temperature were significantly mitigated by 1 m sorbitol, which also enhanced the filamentous phenotype. MEK/ERK was able to constitutively activate a cell wall maintenance reporter gene, suggesting misregulation of this pathway. In contrast, MEK/ERK effectively blocked expression from a pheromone-responsive element promoter and inhibited mating. These results are consistent with MEK/ERK promoting filamentous growth and altering the cell wall through its ability to partially mimic Kss1p and stimulate a pathway normally controlled by Mpk1p, while appearing to inhibit the normal functioning of the structurally related yeast MAP kinase Fus3p.  相似文献   

16.
Hsu V  Zobel CL  Lambie EJ  Schedl T  Kornfeld K 《Genetics》2002,160(2):481-492
The protein kinase Raf is an important signaling protein. Raf activation is initiated by an interaction with GTP-bound Ras, and Raf functions in signal transmission by phosphorylating and activating a mitogen-activated protein (MAP) kinase kinase named MEK. We identified 13 mutations in the Caenorhabditis elegans lin-45 raf gene by screening for hermaphrodites with abnormal vulval formation or germline function. Weak, intermediate, and strong loss-of-function or null mutations were isolated. The phenotype caused by the most severe mutations demonstrates that lin-45 is essential for larval viability, fertility, and the induction of vulval cell fates. The lin-45(null) phenotype is similar to the mek-2(null) and mpk-1(null) phenotypes, indicating that LIN-45, MEK-2, and MPK-1 ERK MAP kinase function in a predominantly linear signaling pathway. The lin-45 alleles include three missense mutations that affect the Ras-binding domain, three missense mutations that affect the protein kinase domain, two missense mutations that affect the C-terminal 14-3-3 binding domain, three nonsense mutations, and one small deletion. The analysis of the missense mutations indicates that Ras binding, 14-3-3-binding, and protein kinase activity are necessary for full Raf function and suggests that a 14-3-3 protein positively regulates Raf-mediated signaling during C. elegans development.  相似文献   

17.
MEK is a dual-specificity kinase that activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase upon agonist binding to receptors. The ERK/MAP kinase cascade is involved in cell fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single Mek gene is present in Caenorhabditis elegans, Drosophila melanogaster, and Xenopus laevis, two Mek homologs, Mek1 and Mek2, are present in the mammalian cascade. The inactivation of the Mek1 gene leads to embryonic lethality and has revealed the unique role played by Mek1 during embryogenesis. To investigate the biological function of the second homolog, we have generated mice deficient in Mek2 function. Mek2 mutant mice are viable and fertile, and they do not present flagrant morphological alteration. Although several components of the ERK/MAP kinase cascade have been implicated in thymocyte development, no such involvement was observed for MEK2, which appears to be nonessential for thymocyte differentiation and T-cell-receptor-induced proliferation and apoptosis. Altogether, our findings demonstrate that MEK2 is not necessary for the normal development of the embryo and T-cell lineages, suggesting that the loss of MEK2 can be compensated for by MEK1.  相似文献   

18.
A worm's life     
Despite its relative anatomic simplicity, the nematode Caenorhabditis elegans (C. elegans) is a complex multicellular organism. In this review, we describe studies that have contributed to a better understanding of certain aspects of the worm's physiology. We focus on the cellular and molecular basis of the interaction between C. elegans and its environment, including its sensory capacities, the intrinsic biological clock that governs the speed of its life, and on some of the factors that control its life span. We also outline very recent findings that have demonstrated the existence of an innate immune system in C. elegans. Finally, we highlight a number of novel techniques that are transforming the worm from a largely genetic model system into an attractive organism for functional genomic studies.  相似文献   

19.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

20.
The nematode C. elegans is an established model for developmental biology. Since the early 90's, this simple model organism has been increasingly used for studying human disease pathogenesis. C. elegans models based either on the mutagenesis of human disease genes conserved in this nematode or transgenesis with disease genes not conserved in C. elegans show several features that are observed in mammalian models. These observations suggest that the genetic dissection and pharmacological manipulation of disease-like phenotypes in C. elegans will shed light on the cellular mechanisms that are altered in human diseases, and the compounds that may be used as drugs. This review illustrates these aspects by commenting on two inherited degenerative diseases, Duchenne's muscular dystrophy and Huntington's neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号