首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ‘Wild Seafood’ Provisioning Service (WSPS), on which commercial fisheries rely, is probably one of the best studied marine ecosystem services due to its economic relevance and because extensive information sources exist for assessment purposes. Yet, the indicators often proposed are not suitable to describe the capacity of the ecosystem to deliver the WSPS. Therefore this study proposes surplus production (SP), a well-established concept in fisheries science, as the basis to calculate the capacity of marine ecosystems to provide the WSPS. SP is defined as the difference between stock production (through recruitment and body growth) and losses through natural mortality. This is, therefore, the production of the stock that could be harvested sustainably without decreasing the biomass. To assess the sustainability of the exploitation of the WSPS we also developed an indicator for this based on SP and compared it to existing fisheries management indicators. When both SP-based indicators showed a decreasing trend, contrasting with an increasing trend in the existing fisheries management indicators, the calculation of the SP-based indicators was scrutinized revealing that the weighting of the stocks into an aggregated indicator, strongly determines the indicator values, even up to the point that the trend is reversed. The aggregated indicators based on SP-weighted stocks can be considered complementary to existing fisheries management indicators as the former accurately reflect the capacity of the commercial fish to provide the WSPS and the sustainability of the exploitation of this service. In contrast the existing fisheries management indicators primarily reflect the performance of management towards achieving fisheries-specific policy goals.  相似文献   

2.
Indicators have been recognised as a useful tool aiding the implementation of an ecosystem approach to fisheries in marine ecosystems. Studies, such as the IndiSeas project (www.indiseas.org), use a suite of indicators as a method of assessing the state and trends of several of the world's marine ecosystems. While it is well known that both fishing and climatic variability influence marine fisheries in the southern Benguela ecosystem there are currently few studies in support of fisheries management that make use of environmental indicators in order to include climatic impacts on marine fish populations. Trends in ecological, fishing and environmental indicators can be utilised in a way that allows an overall ecosystem trend to be determined, and can therefore be used to aid decision support within southern Benguela fisheries. In this study trends in indicators were determined using linear regressions across three time periods, Period 1: 1978–1993, Period 2: 1994–2003 and Period 3: 2004–2010. These time periods were selected based on the timing of regime shifts within the southern Benguela, including changes in upwelling, wind stress and temperature. Each ecological indicator received a score based on the direction and significance of the observed trend with respect to fishing. To account for the impacts of fishing and environmental drivers on ecological indicators, scores were adjusted by predetermined factors, depending on the extent and direction of trends in these indicators. Weightings were applied to correlated ecological indicators to account for their redundancy, and lessen their impact on overall ecosystem score. Mean weighted scores were then used to establish an overall ecosystem score for each time period. Ecosystem classification was determined as follows: 1–1.49 = improving, 1.5–2.49 = possibly improving, 2.5–3.49 = no improvement or deterioration, 3.5–4.49 = possible deterioration, 4.5–5 = deteriorating. The ecosystem was observed to neither deteriorate nor improve across Period 1 or 2 (mean weighted scores: 2.75 and 2.56 respectively), however, during Period 3 a possible improvement was observed (mean weighted score: 1.99). This study shows that the sequential analysis of suites of ecological, fishing and environmental indicators can be used in order to determine ecosystem trends, accounting for both the impacts of fishing and the environment on ecosystem components.  相似文献   

3.
Ecological indicators of fishing pressure in space are an important part of the Data Collection Framework (DCF) established by the European Commission in its attempt to apply an ecosystem approach to fisheries. These indicators are devised to use the information provided by the Vessel Monitoring System, a mandatory tool for EU fishing vessels which allows to record fishing activity in space and time. This study reports and analyzes trends of DCF fishing pressure indicators in the years 2007–2010 for the Italian trawlers in seven Mediterranean geographic sub-areas and the related trends of landing per unit effort. In addition, new versions of these indicators are developed and their performances compared to the DCF ones by a simulation approach. The rationale for these new version of indicators is based on: (i) the development of a formal definition of “fishing ground”, allowing for innovative statistical analyses of fishing patterns in space and time; (ii) the revision of issues affecting DCF indicators. Results provide: (i) the first extensive documentation of space use by fisheries through time; (ii) evidences of subtle yet significant changes in fishing pattern which, in agreement to other studies, indirectly support a decline of fisheries resources in the Mediterranean; (iii) improved versions of DCF fishing pressure indicators, obtained via the identification and analysis of fishing grounds and the assessment of aggregation by Gini's G index. The latter point could mark an important progress in order to overcome some critical weakness evidenced by DCF indicators. Moreover, the statistical identification and analysis of fishing grounds could represent a valuable insight in quantitative investigations of fisheries impacts and effects, even beyond indicators computation.  相似文献   

4.
The study aimed to describe and assess indicators that can potentially contribute to the development of Ecosystem-based Approach to Fisheries Management (EAFM) of prawn stocks in the Malindi-Ungwana Bay, the most productive coastal ecosystem in Kenya. A comprehensive EAFM is required to holistically manage fisheries resources and their associated habitats. The study assessed ecological indicators based on objectives of harvest sustainability and biodiversity conservation. Analyses were performed on data sourced from the State Department of Fisheries, and research databases. Trends in historical landings (1985–2010) of penaeid shrimps from the Malindi-Ungwana Bay were analyzed using LOWESS. Number-size spectra analysis was used to assess the exploitation status of the shrimps, while biomass-trophic level spectra (BTLS) analysis was applied as a potential tool for analyzing multifactor effects on the bay. IndiSeas-based ecosystem indicators were used to assess impact of the prawn trawl fishery on biodiversity of the bay. Results indicate long-term series with two peaks (1997 and 2000) in historical landings of penaeid shrimps and a monotonous decline in catches during 2002–2010. Slopes of number-size spectra suggested increased fishing mortality with time (2008–2012), while patterns of intercepts indicated a general increase in fisheries productivity of the bay. BTLS analysis using demersal fish survey and fish by-catch data suggested reduced levels of biomass across trophic levels and a temporal decline in trophic levels of fish species caught, however, the short time span constrains robust conclusions from the BTLS analysis. Biodiversity and conservation based indicators (e.g. fish sizes, trophic levels and proportion of predators in catches) adopted from the IndiSeas program showed the Malindi-Ungwana Bay to be ecologically degraded. There is need to initiate long-term monitoring programs to strengthen temporal scale of analysis of the datasets and to support use of ecological indicators for resource management and development of an EAFM in data-poor WIO countries.  相似文献   

5.
There are global calls for new ecosystem-based fisheries management (EBFM) approaches. Scientific support for EBFM includes assessing ecosystem indicators of biological communities, environmental conditions, and human activities. As part of a broader research project we have synthesized a suite of traditional and new indicators for the Grand Bank in Atlantic Canada, which we share here. This is an ideal ecosystem for indicator analysis because it experienced dramatic changes over the past three decades, including a collapse in fish biomass that had profound socio-economic consequences. We exploit the wealth of data for this ecosystem to investigate how individual indicators reflect observed changes in the ecosystem, and then illustrate two applications of this indicator suite. Correlations were used to show that relationships among the fish functional groups changed after the collapse, and that a subset of indicators is sufficient to characterize each ecosystem category. Lagged correlations highlighted how changes in the drivers and pressures are often not immediately manifest in the fish community structure. We also organized indicators into the DPSIR (driver-pressure-state-impact-response) management framework. This exercise illustrated that indicator categorization is contextual and not straightforward, and we advocate for use of simpler categories that clearly show what is actionable. Additional future analyses that can be performed with our newly published suite of indicators are recommended.  相似文献   

6.
This work provides a formal evaluation of 25 ecological indicators highlighted by the Southeast Fisheries Science Center’s IEA program as useful for tracking ecosystem components in the Gulf of Mexico. Using an Atlantis ecosystem model as an operating model, we select indicators that are quantifiable using simulation outputs and evaluate their sensitivity to changes in fishing mortality. Indicator behavior was examined using a multivariate ordination. The ordination is used to tell how well each indicator describes variation in ecosystem structure (termed ‘importance’) under different levels of fishing mortality and to reveal redundancies in the information conveyed by indicators. We determine importance using sample data from the operating model, with and without observation error added. Indicators whose importance is diminished least by error are considered robust to observational error. We then quantify the interannual noise of each indicator, where annual variability relates to the required sampling frequency in a management application. Red snapper biomass, King mackerel biomass and Reef fish catch ranked in the top 5 most important without error scenarios, and King mackerel biomass and Species richness were in the top 5 most important even after error was added. Red snapper biomass was consistently found to be the most important and most robust among fishing mortality scenarios tested, and all 4 of these indicators were found to have low levels of interannual noise suggesting that they need to be sampled infrequently. Our results provide insight into the usefulness of these indicators for fisheries managers interested in the impacts of fishing on the ecosystem.  相似文献   

7.

Background

Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them.

Methodology/Principal Findings

We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications.

Conclusions/Significance

This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.  相似文献   

8.
Three indicators quantifying interactions between species are developed for an upwelling system to provide useful measures for the comparison of marine ecosystem structure and function. Small pelagic fish are dominant in upwelling systems, and by definition, they are pivotal in a wasp-waist upwelling system. The indicator of interaction strength (IS) quantifies the effect that a change in biomass of one group has on abundance of other groups. The functional impact (FI) indicator quantifies the trophic impacts of species on their own and other functional groups or feeding guilds. The trophic replacement (TR) indicator quantifies the trophic similarity between a species that is removed from an ecosystem and other species in that ecosystem, i.e. it quantifies the ability of one group to trophically replace another. A trophic model of the southern Benguela ecosystem is used as an example for the application of the indicators. The strong similarities in trophic functioning of the southern Benguela ecosystem in the anchovy-dominated system of the 1980s, and the 1990s when there was a shift towards greater sardine abundance, are explained by the mutual trophic replacement abilities of anchovy and sardine. Differences between the proposed indicators and mixed trophic impact assessment are highlighted, mainly resulting from the static versus dynamic nature of the models upon which they are based. Trophic indicators such as those presented here, together with other kinds of ecosystem indicators, may assist in defining operational frameworks for ecosystem-based fisheries management.  相似文献   

9.
In the present study, we tested five trophic indicators and we demonstrated their usefulness to assess the environmental status of marine ecosystems and to implement an ecosystem approach to fisheries management (EAFM). The tested indicators include the slope of the biomass spectrum, the mean trophic level (MTL), the marine trophic index (MTI) and two newly developed indicators, the high trophic level indicator (HTI) and the apex predator indicator (API). Indicators are compared between current state and potential reference situations, using as case studies: the Celtic Sea/Bay of Biscay, North Sea and English Channel ecosystems. Trophic spectra are obtained from Ecopath models while reference situations are estimated, simulating with EcoTroph and Ecosim different fishing pressures including three candidate scenarios for an EAFM. Inter-ecosystems assessments are done using Ecopath models, simulations outputs and scientific surveys data to assess the current states of the studied ecosystems, contrast the reference situations and analyze the responses of all indicators. Sensitivity analyses are also conducted on the main simulation parameters to test the robustness of the chosen indicators. Ecosystems specific targets for EAFM are proposed for the five trophic indicators estimated from whole-ecosystem models, while in the Celtic Sea/Bay of Biscay ecosystem targets are proposed for the MTL (=3.85) and HTI (48%) estimated from standard bottom-trawl surveys. The HTI is proposed to be relevant for survey data and the API is recommended using whole-ecosystem models. We conclude that HTI and API show trends in ecosystems health better than MTI.  相似文献   

10.
An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals.  相似文献   

11.
Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social-ecological system dynamics.  相似文献   

12.
Mean trophic level (MTL) is one of the most widely used indicators of marine ecosystem health. It usually represents the relative abundance of fished species across a spectrum of TLs. The reality, ubiquity, and causes of a general decline in the MTL of fisheries catch through time, and whether fisheries catch tracks ecosystem level changes, have engendered much attention. However, the consequences of such patterns for broader ecosystem structure and function remain virtually unexplored. Along the Pacific U.S. Coast, previous work has documented fluctuations and a slow increase in ecosystem MTL from 1977 to 2004. Here, we document a decline in the ecosystem MTL of groundfishes in the same ecosystem from 2003 to 2011, the proximate cause of which was a decrease in the biomass of higher TL groundfishes. Using a food web model, we illustrate how these shifts in ecosystem structure may have resulted in short term, positive responses by many lower TL species in the broader ecosystem. In the longer term, the model predicts that initial patterns of prey release may be tempered in part by lagged responses of other higher TL species, such as salmon and seabirds. Although ecosystem functions related to specific groups like piscivores (excluding high-TL groundfishes) changed, aggregate ecosystem functions altered little following the initial reorganization of biomass, probably due to functional redundancy within the predator guild. Efforts to manage and conserve marine ecosystems will benefit from a fuller consideration of the information content contained within, and implied by, fisheries-independent TL indicators.  相似文献   

13.
Ecological indicators are increasingly used to examine the evolution of natural ecosystems and the impacts of human activities. Assessing their trends to develop comparative analyses is essential. We introduce the analysis of convergence, a novel approach to evaluate the dynamic and trends of ecological indicators and predict their behavior in the long-term. Specifically, we use a non-parametric estimation of Gaussian kernel density functions and transition probability matrix integrated in the R software. We validate the performance of our methodology through a practical application to three different ecological indicators to study whether Mediterranean countries converge towards similar fisheries practices. We focus on how distributions evolve over time for the Marine Trophic Index, the Fishing in Balance Index and the Expansion Factor during 1950–2010. Results show that Mediterranean countries persist in their fishery behaviors throughout the time series, although a tendency towards similar negative effects on the ecosystem is apparent in the long-term. This methodology can be easily reproduced with different indicators and/or ecosystems in order to analyze ecosystem dynamics.  相似文献   

14.
Competition between marine mammals and fisheries for marine resources-whether real or perceived-has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TL(Q)) and compared it with the mean trophic level of fisheries' catches (TL(C)). Our results showed that overall TL(Q) was lower than TL(C) (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species.  相似文献   

15.
The ecosystem approach to fisheries recognises the interdependence between harvested species and other ecosystem components. It aims to account for the propagation of the effects of harvesting through the food-web. The formulation and evaluation of ecosystem-based management strategies requires reliable models of ecosystem dynamics to predict these effects. The krill-based system in the Southern Ocean was the focus of some of the earliest models exploring such effects. It is also a suitable example for the development of models to support the ecosystem approach to fisheries because it has a relatively simple food-web structure and progress has been made in developing models of the key species and interactions, some of which has been motivated by the need to develop ecosystem-based management. Antarctic krill, Euphausia superba, is the main target species for the fishery and the main prey of many top predators. It is therefore critical to capture the processes affecting the dynamics and distribution of krill in ecosystem dynamics models. These processes include environmental influences on recruitment and the spatially variable influence of advection. Models must also capture the interactions between krill and its consumers, which are mediated by the spatial structure of the environment. Various models have explored predator-prey population dynamics with simplistic representations of these interactions, while others have focused on specific details of the interactions. There is now a pressing need to develop plausible and practical models of ecosystem dynamics that link processes occurring at these different scales. Many studies have highlighted uncertainties in our understanding of the system, which indicates future priorities in terms of both data collection and developing methods to evaluate the effects of these uncertainties on model predictions. We propose a modelling approach that focuses on harvested species and their monitored consumers and that evaluates model uncertainty by using alternative structures and functional forms in a Monte Carlo framework.  相似文献   

16.
Climate impacts are now widely reported from coastal marine systems, but less is known for the open ocean. Here we review progress in understanding impacts on large pelagic species presented at an international workshop for the Climate Impacts on Oceanic Top Predators programme, and discuss the future with regard to the next phase of adaptation-focused research. Recent highlights include a plan to map the distribution of key species in the foodweb using both acoustics and biochemical techniques, and development of a new data sharing and access tool for fisheries and associated data, including socio-economic information. A common research focus in pelagic ecosystems is on understanding climate variability and climate change impacts on marine species, but a greater emphasis on developing future scenarios and adaptation options is needed. Workshop participants also concluded that engagement with and provision of science support to regional fisheries management organisations are critical elements for ensuring successful uptake of research. This uptake will be required for future management of fisheries as global warming continues such that some open ocean top predators can be sustainably harvested, impacts on conservation-dependent species can be avoided, and ecosystem function is not compromised.  相似文献   

17.
IndiSeas (“Indicators for the Seas”) is a collaborative international working group that was established in 2005 to evaluate the status of exploited marine ecosystems using a suite of indicators in a comparative framework. An initial shortlist of seven ecological indicators was selected to quantify the effects of fishing on the broader ecosystem using several criteria (i.e., ecological meaning, sensitivity to fishing, data availability, management objectives and public awareness). The suite comprised: (i) the inverse coefficient of variation of total biomass of surveyed species, (ii) mean fish length in the surveyed community, (iii) mean maximum life span of surveyed fish species, (iv) proportion of predatory fish in the surveyed community, (v) proportion of under and moderately exploited stocks, (vi) total biomass of surveyed species, and (vii) mean trophic level of the landed catch. In line with the Nagoya Strategic Plan of the Convention on Biological Diversity (2011–2020), we extended this suite to emphasize the broader biodiversity and conservation risks in exploited marine ecosystems. We selected a subset of indicators from a list of empirically based candidate biodiversity indicators initially established based on ecological significance to complement the original IndiSeas indicators. The additional selected indicators were: (viii) mean intrinsic vulnerability index of the fish landed catch, (ix) proportion of non-declining exploited species in the surveyed community, (x) catch-based marine trophic index, and (xi) mean trophic level of the surveyed community. Despite the lack of data in some ecosystems, we also selected (xii) mean trophic level of the modelled community, and (xiii) proportion of discards in the fishery as extra indicators. These additional indicators were examined, along with the initial set of IndiSeas ecological indicators, to evaluate whether adding new biodiversity indicators provided useful additional information to refine our understanding of the status evaluation of 29 exploited marine ecosystems. We used state and trend analyses, and we performed correlation, redundancy and multivariate tests. Existing developments in ecosystem-based fisheries management have largely focused on exploited species. Our study, using mostly fisheries independent survey-based indicators, highlights that biodiversity and conservation-based indicators are complementary to ecological indicators of fishing pressure. Thus, they should be used to provide additional information to evaluate the overall impact of fishing on exploited marine ecosystems.  相似文献   

18.
Canada is a strong supporter of the United Nations Fish Stocks Agreement. Whether Canada's support is matched by its actions in strengthening regional fisheries organizations and arrangements dealing with straddling and highly migratory fish stocks is thus worthy of investigation. This contribution examines Canadian activities within regional fisheries organizations with particular reference to implementation of the precautionary and ecosystem approaches and the issue of enforcement of conservation and management measures. Although Canadian actions appear generally to be furthering implementation of the Agreement, comprehensive integration of words and deeds remains to be achieved.  相似文献   

19.
为探究EwE(Ecopath with Ecosim)模型的历史演变和应用现状,本文通过Web of Science主题检索和引文链接法获得1984—2020年间的研究文献构成核心数据集和扩展数据集,并以此为数据源,从论文分布、研究力量、研究主题、热点演化等方面进行科学文献计量分析,利用CiteSpace软件绘制相关图谱。结果表明: EwE模型的系列研究成果产出总体呈上升态势,且广泛分布于多学科交叉领域, Christensen、Walters、Pauly等学者在模型应用和国际合作中起到重要推动作用。过去,EwE模型通过建立功能组间的营养关系,主要用于解决生态系统结构和功能的时空变化、捕捞对生态系统影响等问题。当前,研究主题聚焦于海洋资源管理、生态系统模拟、海洋保护区、生态系统指标等重点群组。研究热点从模型开发和食物网结构向生态系统预测和资源管理研究演变,从而为基于生态系统的水域资源管理和海洋保护区建设等提供科学依据。  相似文献   

20.
For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号