首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary UV-irradiated c phages show a lower survival when plated on rec -cells as compared to rec +-cells. Photodynamically inactivated c phages show the lowest survival on hcr ; rec -cells. The rec-functions do not influence the repair of UV- or photodynamically induced lesions in T1 phages.  相似文献   

2.
Summary The isolation of transducing phages carrying the tolPAB cluster is described. These genes map between gltA and gal in Escherichia coli, and thus are relatively close to att. To isolate these transducing phages, it was necessary to use a strain deleted of most of the intervening genes (nadA to chlD) between tolPAB and att. Using a lysogen of such a deletion strain, several defective dtol phages were isolated that carry different amounts of the tolPAB cluster.All of these dtolPAB phages were defective in both lysogenization and vegetative growth, and in this respect were similar to dgal transducing phages.The usefulness of such specialized transducing phages in studying the cell surface is discussed.Research Fellow of the National Cancer Institute of Canada.  相似文献   

3.
The origin of Q-independent derivatives of phage lambda   总被引:13,自引:0,他引:13  
Summary qsr (Q-independent) phages are characterised by the replacement of the region of the genome that contains Q, S, R, and the late gene promoter, PR, with host-derived DNA that codes for functions analogous to those deleted. Restriction endonuclease analysis and DNA/DNA hybridisation methods have been used to show that p4 and qin A 3, two such Q-independent phages, are the product of recombination between and a defective lambdoid prophage (the qsr prophage) located at an as yet unidentified site in the E. coli K 12 chromosome. The qsr prophage is distinct from the defective lambdoid prophage Rac (Kaiser and Murray 1979). In the E. coli K 12 strain AB1157 from which qsr phages cannot be generated, the qsr prophage has suffered an internal deletion. That the qsr prophage appears not to carry a full complement of essential late genes suggests one explanation for its apparently defective nature.  相似文献   

4.
Evidence for the genomic organization of human lambda light chain joining (J) region gene segments is presented. A mouse J probe was used in Southern hybridizations to localize joining region sequences in a cosmid clone containing the genomic cluster of six human lambda constant (C) region gene segments. The results of these hybridizations suggest the presence of at least one J gene segment upstream from each constant region gene segment. The DNA sequences indicate that the human JI, J2, and J3 gene segments have consensus nonamer and heptamer sequences, proposed to be involved in V-J joining, are capable of encoding the known amino acid sequences for the respective J peptides, and have a sequence which could give functional RNA splice site at the end of their coding regions. Our data show that a single functional J is located 1.3 or 1.6 kb upstream of each of the C gene segments known to encode the Mcg, Kern Oz, and KernOz+ isotypes. Therefore, the gene organization of this region of the human lambda locus is J1 CI -J2C2-J3C3. The DNA sequences ofJ 1,J 2, andJ 3 presented in this paper establish that a singleJ gene segment precedes each expressed C gene segment, and support a model for the evolution of the human JC clusters where JICI andJ2C2-J3C3. arose from different ancestral JC units.  相似文献   

5.
    
Summary Previous experiments have shown that mutations in the Ai gene can suppress the growth defect of N - phages.Many temperature resistant derivatives of phage tsN 9 have been isolated and among these 5 have been found which are Ai - and have an amber suppressible behaviour.These mutants can help in defining the role of the Ai gene in phage development.  相似文献   

6.
Summary Hybrid ColE1 plasmids called ColE1-cos-guaA or ColE1-cos-gal can be efficiently transduced into various E. coli K-12 cells through packaging into phage particles. Using these plasmids, repair of ultraviolet-light (UV) damaged ColE1 DNAs was studied in various UV sensitive E. coli K-12 mutants. (1) The host mutations uvrA and uvrB markedly reduced host-cell reactivation of UV-irradiated ColE1-cos-guaA. (2) Pre-existing hybrid ColE1 plasmids had no effect on the frequency of phage-mediated transduction of another differentially marked hybrid ColE1 DNAs. (3) ColE1-cos-guaA and ColE1-cos-gal DNAs could temporarily but not stably co-exist in E. coli K-12 recA cells. (4) The presence of ColE1-cos-gal in uvrB cells promoted the repair of super-infected UV-irradiated ColE1-cos-guaA about 7-fold. (5) The same ColE1-cos-gal plasmid in a uvrB recA double mutant did not have this promoting effect. These results indicate that the effect of resident hybrid ColE1 plasmids is manifested by the host recA + gen function(s) and suggest that ColE1 plasmid itself provides no recA +-like functions.  相似文献   

7.
Summary The mode of antirepressor action in anti-immune cells was analysed in respect to its two main features, low lysogenization and high cell killing. By means of complementation experiments between and i434 in anti-immune cells, it was shown that the antirepressor no longer channels phages towards lysis in such cells if the genes which are needed for lysogenization are provided in trans by the heteroimmune phage i434. Since complementation could be demonstrated, it was possible to exclude that direct action of the antirepressor over repressor production is responsible for the feature under analysis. It was also shown that both int- and cII-product are required to improve lysogenization and to prevent high levels of killing.Recipient of an EMBO predoctoral fellowship.  相似文献   

8.
Summary Escherichia coli cells lysogenic for temperate phage HK239 exclude phages , HK022, P1 vir, P2, and rII mutants of phage T4. After mutagenic treatment, four isolates were obtained for their inability to exclude T4rII. It is shown that this mutation, designated exc, is located in the prophage HK239, and that, it also abolishes the exclusion of phages , HK022, P1 vir, and P2.  相似文献   

9.
Summary This work deals with the ability of phage 80 to provide defective mutants of with their missing functions. Functions Involved in Recombination. As shown by others, the Int mechanism of 80 cannot excise prophage . However, 80 efficiently excises recombinants from tandem dilysogens, using its Ter mechanism. Likewise, the nonspecific mechanism Red is interchangeable between 80 and . Maturation of DNA by 80. The Ter recombinants excised by 80 from tandem dilysogens are packaged into a 80 protein coat. This contrasts with the fact, already mentionned by Dove, that 80 is extremely inefficient for packaging phage superinfecting a -lysogen. The latter result is also found when the helper phage is a hybrid with the left arm of (80hy4 or 80hy41 — see Fig. 1). However, the maturation of the superinfecting is much more efficient if the 80hy used as a helper has the att-N region of (like 80hy1). Conversely a with the att-N region of 80 (hy6 — see Fig. 1) is packaged more efficiently by 80 or 80hy4 than by 80hy1. It is suggested that the maturation of chromosome superinfecting an immune cell requires a recombination with the helper phage. Vegetative Functions. Among the replicative functoons O and P, the latter only can be supplied by 80. That N mutants are efficiently helped by 80 does not tell that 80 provides the defective with an active N product; the chromosomes are simply packaged into a 80 coat. This shows that 80 is unable to switch on the late genes of . That neither 80 nor any of the 80hy tested can provide an active N product is shown in a more direct way by their complete failure to help N -r14; this phage carries a polar mutation which makes the expression of genes O and P entirely N-dependant. The maturation of a N - by 80 contrasts with the fact that mutants affected in late genes (A, F or H) are not efficiently helped by 80. This suggests that the products coded by these genes are not interchangeable between 80 and , and that packaging of DNA into 80 coats is possible but inhibited when late proteins are present in the cell. Activation of the Late Genes. Among the im 80 h + hybrids tested, only 80hy41 is able to switch on the late genes of a N defective mutant. This hybrid differs from the other hybrids studied here, by the fact that it has the Q-S-R region of (see Fig. 1). The results are consistant with the view that the product of Q gene is sufficient for activating the late genes of a DNA. N would thus control the expression of late genes only indirectly by controlling the expression of gene Q (Couturier & Dambly have independantly reached the same conclusion, 1970). Furthermore the failure of 80 and of the 80hy1 and 80hy4 to activate the late genes of would imply that these phages are unable to provide an Q product active on the chromosome Reciprocally, switches on the late genes of prophage 80hy41, but not of prophages 80hy1 and 80hy4. This suggests that the initiation of late genes expression takes place at a main specific site located in the Q-S-R region of the chromosome. The expression of the late genes would thus be sequential, and proceed through the left arm only when steaky ends cohere. Similar conclusions were reached independantly by Toussaint (1969) and by Herskowitz and Signer (1970).

Ce travail a été réalisé dans le cadre du contrat d'association Euratom-U. L. B. 007-61-10 ABIB et avec l'aide du Fonds de la Recherche Fondamentale Collective.  相似文献   

10.
Summary IS2 has been marked genetically by the in vitro insertion into its HindIII site of a 3.3 Kb HindIII fragment of Tn5 conferring resistance to kanamycin. The transposition of the IS2::Km, thus obtained, to has been found and insertion sites were characterised. Each of ten independent IS2::Km insertions were found at the same site at 61.2% of the map, always in the same orientation (orientation II relative to the xis gene). The integration sites of IS2::Km in five of the kanamycin-transducing phages were determined by DNA sequence analysis, and were found to be identical at the nucleotide level. Further transposition of IS2::Km from to the bacterial chromosome was demonstrated.  相似文献   

11.
Summary derivatives including the thymidylate synthetase (td) gene of T4 were selected by their ability to substitute for the thyA gene of E. coli. Two HindIII fragments of T4 DNA, but only one EcoRI fragment, are required for a functional td gene; one of the HindIII fragments includes a functional frd gene. The organisation of the EcoRI and HindIII fragments in the td region and their orientation with respect to the T4 genome have been deduced from genetic, physical, and functional evidence. The T4 genes can be transcribed from phage promoters and the T4td derivatives include genes specifying five T4 polypeptides. Three of these are identified as the products of the frd, td, and nrdA genes; two, neither of which appears to be the nrdB gene product, remain to be identified. Some td phages yield lysogens of thyA bacteria which are thymine-independent and some frd phages yield trimethoprim-resistant lysogens, indicating that the td and frd genes can be transcribed from included T4 DNA sequences. EcoRI fragments of DNA from the td and lig regions, used as probes, identified a single large HindIII fragment that joins the HindIII fragment carrying the DNA ligase gene to that carrying the td gene. Since this fragment, which must include genes coding for RNA ligase and polynucleotide kinase, could not be recovered in either phage or plasmid vectors, a derivative of it was used to identify the EcoRI fragments located between the td and DNA ligase genes. The order of these fragments within the T4 genome was deduced and all but one of them cloned in a vector. As none of these recombinants rescued T4 phage having mutations within the RNA ligase gene, the missing fragment may include this gene. Three adjacent EcoRI fragments, each of which has been cloned, are missing in a mutant of T4 deleted for the polynucleotide kinase gene.  相似文献   

12.
Summary From the specialized transducing bacteriophage cysB, recombinant phages cysB242 and cysB257 have been obtained, each of which carries an amber mutation in the cysB cistron. A comparison of polyacrylamide gel electrophoretic profiles of labelled extracts from uv-irradiated bacteria that had been infected with cysB + or with cysB-amber phages, led to the identification of a 39,000-dalton polypeptide as the product of the cysB gene. The native protein was purified to near radiochemical purity and was found to be an oligomer with an isoelectric point close to pH 7.  相似文献   

13.
TherglB gene ofEscherichia coli codes for a restriction activity that cleaves the hydroxymethylated DNA of T2 and T4 phages. Earlier mapping data placed the gene at 98.39 min counterclockwise to thehsd operon. Genetic analysis of the in vivo gene fusions with fusion-transducing phages established the location of therglB gene next to thehsdS gene of thehsdRMS cluster. The methodology used in this study could be extended to similar in vivo physical mapping of closely linked genes.  相似文献   

14.
Summary Escherichia coli mutants, called groNB, which block the growth of bacteriophage at the level of action of the gene N product, have been isolated as survivors at 42°C of bacteria carrying a) the defective prophage bio1 1 i cI857 H1 or b) the pcR1 plasmid containing the EcoRI immunity fragment of phage cI857. In addition, groNB bacterial mutants have been isolated at 37° C, as large colony formers in the presence of i cI h 434, i cI h , and i cI h 80 phage. The groNB locus is located at 9 minute of the E. coli genetic map with the order of the neighboring loci being proC tsx groNB purE. Most groNB mutations isolated at 42° C were found to interfere in addition with bacterial growth at low temperatures, since (a) the GroNB phenotypes of growth inhibition and bacterial cold sensitivity cannot be separated by P1 transduction, and (b) some cold resistant revertants simultaneously become Gro+ for growth. Lambda transducing phages carrying the groNB + bacterial gene have been isolated. GroNB mutant bacterial lysogenized by the transducing phage acquire the Gro+ phenotype and simultaneously the cold resistant phenotype, suggesting that the groNB mutations are recessive to the wild-type gene.  相似文献   

15.
Summary The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli (Ca++, Mg++ dependent ATPase, EC 3.6.1.3) were mapped through genetic, physical and functional analysis of specialized transducing phages asn (von Meyenburg et al. 1978). The ATP synthase genes, designated atp 1, are located at 83.2 min in a segment of the chromosome between 3.5 and 11.3 kb left (counterclockwise) of the origin of replication oriC. The counterclockwise order of the genes for the eight subunits, the expression of which starts from a control region at 3.5 kb-L, was found to be: a, (c, b, ), , , (, ) which in the notation of Downie et al. (1981) reads atpB (E F H) A G (C D). The analysis was in part based on the isolation of new types of atp (unc, Suc-) mutations. We made use of the fact that specialized transducing phages asn carrying oriC can establish themselves as minichromosomes rendering asnA cells Asn+, and that the resulting Asn+ cells grow slowly if the asn carries part or all of the atp operon. Selecting for fast growing strains mutations were isolated on the asn which either eliminated atp genes or affected their expression (promoter mutations). The relationship between these atp mutations and the cop mutations of Ogura et al. (1980), which also appear to map in front of or within the atp genes, is discussed.  相似文献   

16.
Summary A compilation of nucleic acid sequences fromE.coli and its phages has been analysed for the frequency of occurrence of nearest neighbour base doublets and codons. Several statistically significant deviations from random are found in both doublet and codon frequencies. The deviations inE.coli also appear to occur in and in the coat protein gene of MS2, whereas T4 and other parts of the MS2 genome show different sequence properties. These and other findings are discussed in relation to the hypothesis that rapidity of translation of mRNAs in theE. coli system is dependent on doublet frequency and codon usage patterns.  相似文献   

17.
Summary A spontaneous streptomycin-resistant Escherichia coli mutant which is temperature-sensitive for suppression of a nonsense codon was studied for its ability to propagate phages T2, T4D, T5, K, f2, MS2, R17, Q, as well as filamentous phages fl, fd and M13. Of all phages tested, only the growth of Q, , and filamentous phages is inhibited in the mutant at 42° C. This selective inhibition suggests that, like Q, and filamentous phages also require a read-through protein(s) which results from suppression of a termination codon.  相似文献   

18.
Summary A phage has been isolated which specifically transduces the Escherichia coli pheS and pheT genes coding for the and subunits of the phenylalanyl-tRNA synthetase (PRS). This phage transduces with high frequency (i) several temperaturesensitive PRS mutants to thermoresistance and (ii) a p-fluorophenylalanine resistant PRS mutant to sensitivity against this amino-acid analog. The in vitro PRS activities of such lysogens suggest that the and subunits coded by the transducing phage complement the mutant host PRS-subunits in vivo by means of formation of hybrid enzymes.The transducing phages were also used to infect UV light irradiated cells. The SDS-gel electrophoretic analysis of the proteins synthesized in such cells revealed that the phage codes at least for four different E. coli proteins. Two proteins with molecular weights of 94,000 and 38,000 daltons cross-reacted with an anti PRS serum and were thus identified as the and subunits of PRS, respectively. A third protein with w molecular weight of 22,000 daltons is identical with the ribosomal initiation factor IF3 (Springer et al., 1977b). The other protein (Mr 78,000) is still unidentified.  相似文献   

19.
Summary Fragments of the E. coli chromosome that carry the dnaB groPB534 or groPB612 alleles have been cloned into a cosmid vector. The resulting recombinant plasmids contained the genes uvrA, groP (B534 or B612), and lexA. Further subcloning into high copy number plasmids, during which the uvrA and lexA genes were removed successively, yielded a groPB534 and groPB612 DNA fragment of about 2.4 kb each. Both fragments contained an overlapping 1.8 kb segment of DNA in which the sites of all restriction enzymes tested were identical. The size of these dnaB gene fragments were further delimited by deletion analysis.In E. coli groPB534 in which wild-type and A mutants do not replicate (Georgopoulos and Herskowitz 1971) phage replication is rescued if the strain contains the groPB534 gene on high copy number plasmids. On the contrary, in E. coli groPB612, which is temperature-sensitive for its groP character, replication of and A is abolished at 30° C if the strain contains the groPB612 recombinant plasmid. On the other hand, replication of B remains unaffected whether or not the groP strains harbor the isogenic dnaB gene-containing plasmid. The results suggest that within the cell not only the quality but also the relative amounts of dnaB and P protein are crucial for phage replication.  相似文献   

20.
It has been found that the level of methyl methanesulfonate (MMS)-induced mutation in Escherichia coli is dependent on the level of UmuD(D)C proteins. The frequency of argE(ochre)Arg+ mutations (which occur predominantly by ATTA transversions) and RifSRifR mutations is much higher when UmuDC or UmuD'C are overproduced in the cell. When MMS-treated bacteria were starved for progressively longer times and hence the expression of mutations delayed, the level of mutations observed progressively declined. This same treatment had no effect on the degree of SOS induction. Examination of plasmid DNAs, isolated from MMS-treated cells, for their sensitivity to the specific endonucleases Fpg and Nth revealed that MMS causes formation of abasic sites, which are repaired during cell starvation. It is assumed that, in non-dividing cells, apurinic sites are mostly repaired by RecA-mediated recombinational repair. This pathway, which is error-free, is compared with the processing pathway in metabolically active cells, where translesion synthesis by the UmuD2C-RecA-DNA polymerase III holoenzyme complex occurs; this latter pathway is error-prone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号