首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Louch HA  Buczko ES  Woody MA  Venable RM  Vann WF 《Biochemistry》2002,41(46):13644-13652
The carboxyl-terminal region of the tetanus toxin heavy chain (H(C) fragment) binds to di- and trisialylgangliosides on neuronal cell membranes. To determine which amino acids in tetanus toxin are involved in ganglioside binding, homology modeling was performed using recently resolved X-ray crystallographic structures of the tetanus toxin H(C) fragment. On the basis of these analyses, two regions in tetanus toxin that are structurally homologous with the binding domains of other sialic acid and galactose-binding proteins were targeted for mutagenesis. Specific amino acids within these regions were altered using site-directed mutagenesis. The amino acid residue tryptophan 1288 was found to be critical for binding of the H(C) fragment to ganglioside GT1b. Docking of GD1b within this region of the toxin suggested that histidine 1270 and aspartate 1221 were within hydrogen bonding distance of the ganglioside. These two residues were mutagenized and found also to be important for the binding of the tetanus toxin H(C) fragment to ganglioside GT1b. In addition, the H(C) fragments mutagenized at these residues have reduced levels of binding to neurites of differentiated PC-12 cells. These studies indicate that the amino acids tryptophan 1288, histidine 1270, and aspartate 1221 are components of the GT1b binding site on the tetanus toxin H(C) fragment.  相似文献   

2.
Ganglioside expression and tetanus toxin binding were studied in the rat pheochromocytoma cell line PC12. Seven ganglioside species were readily detected in extracts of PC12 cells; two were identified as tri- and tetrasialogangliosides, which are common brain constituents but unusual components of neuronal cell lines. Carbohydrate composition, acid and enzyme hydrolyses, and mass spectral analysis revealed that the major species is GT 1b, a predominant mammalian brain ganglioside previously reported to support high affinity tetanus toxin binding (Rogers, T. B., and Snyder, S. H. (1981) J. Biol. Chem. 256, 2402-2407). Direct binding of 125I-tetanus toxin to PC12 gangliosides on TLC plates revealed selective binding to the tri- and tetrasialogangliosides. Radioiodinated toxin also bound with high affinity to intact PC12 cells or their isolated membranes. The binding affinity (Kd = 1.25 nM), density of receptors (Bmax = 238 pmol/mg of membrane protein), and dependence on pH, ionic strength, and temperature were similar to those previously reported for toxin binding to rat brain synaptic membranes. Differentiation of PC12 cells caused an increase in expression of the tri- and tetrasialogangliosides and a closely matched increase in tetanus toxin binding to cell membranes. These data provide evidence that complex gangliosides may act as tetanus toxin receptors, and demonstrate the utility of the PC12 cell line for studies of tetanus toxicity and complex ganglioside expression.  相似文献   

3.
Tetanus and botulinum neurotoxins selectively invade neurons following binding to complex gangliosides. Recent biochemical experiments demonstrate that two ganglioside binding sites within the tetanus neurotoxin HC-fragment, originally identified in crystallographic studies to bind lactose or sialic acid, are required for productive binding to target cells. Here, we determine by mass spectroscopy studies that the HC-fragment of botulinum neurotoxins A and B bind only one molecule of ganglioside GT1b. Mutations made in the presumed ganglioside binding site of botulinum neurotoxin A and B abolished the formation of these HC-fragment/ganglioside complexes, and drastically diminished binding to neuronal membranes and isolated GT1b. Furthermore, correspondingly mutated full-length neurotoxins exhibit significantly reduced neurotoxicity, thus identifying a single ganglioside binding site within the carboxyl-terminal half of the HC-fragment of botulinum neurotoxins A and B. These binding cavities are defined by the conserved peptide motif H...SXWY...G. The roles of tyrosine and histidine in botulinum neurotoxins A and B in ganglioside binding differ from those in the analogous tetanus neurotoxin lactose site. Hence, these findings provide valuable information for the rational design of potent botulinum neurotoxin binding inhibitors.  相似文献   

4.
Chen C  Baldwin MR  Barbieri JT 《Biochemistry》2008,47(27):7179-7186
Tetanus toxin (TeNT) elicits spastic paralysis through the cleavage of vesicle-associated membrane protein-2 (VAMP-2) in neurons at the interneuronal junction of the central nervous system. While TeNT retrograde traffics from peripheral nerve endings to the interneuronal junction, there is limited understanding of the neuronal receptors utilized by tetanus toxin for the initial entry into nerve cells. Earlier studies implicated a coreceptor for tetanus toxin entry into neurons: a ganglioside binding pocket and a sialic acid binding pocket and that GT1b bound to each pocket. In this study, a solid phase assay characterized the ganglioside binding specificity and functional properties of both carbohydrate binding pockets of TeNT. The ganglioside binding pocket recognized the ganglioside sugar backbone, Gal-GalNAc, independent of sialic acid-(5) and sialic acid-(7) and GM1a was an optimal substrate for this pocket, while the sialic acid binding pocket recognized sialic acid-(5) and sialic acid-(7) with "b"series of gangliosides preferred relative to "a" series gangliosides. The high-affinity binding of gangliosides to TeNT HCR required functional ganglioside and sialic acid binding pockets, supporting synergistic binding to coreceptors. This analysis provides a model for how tetanus toxin utilizes coreceptors for high-affinity binding to neurons.  相似文献   

5.
Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.  相似文献   

6.
Y Li  R Aoki  J O Dolly 《Journal of biochemistry》1999,125(6):1200-1208
Tetanus toxin, composed of a disulphide-linked heavy (HC) and light (LC) chain, preferentially blocks the release of inhibitory neurotransmitters in the spinal cord by Zn2+-dependent proteolytic cleavage of synaptobrevin. This intoxication involves binding via HC to ecto-acceptors on peripheral nerve endings, followed by internalisation and retrograde transportation to its prime site of action in central neurons. To facilitate exploitation of the toxin's unique activities, HC was expressed at a high level in Escherichia coli as a fusion with maltose binding protein; after cleavage by thrombin, free HC was isolated and its identity confirmed by Western blotting and N-terminal microsequencing. The expressed and native HC gave very similar circular dichroism spectra, excluding any gross differences in their folded structures. Recombinant HC antagonised the neuromuscular paralysing activity of the native toxin, by competing for binding to neuronal ecto-acceptors. The HC was reconstituted with bacterially-expressed LC to create disulphide-bridged dichain toxin that blocked neuromuscular transmission. The fully-recombinant toxin produced spastic paralysis in mice characteristic of the blockade of central inhibitory synapses, revealing that it undergoes axonal transport to the spinal cord, like the native toxin but with a reduced efficacy. This first report of the large-scale production of recombinant tetanus toxin in active form should facilitate studies on the use of engineered innocuous forms of the toxin as neuronal transport vehicles.  相似文献   

7.
The non-toxin 50 kD C-terminus peptide of the heavy chain of tetanus H(c) contains the ganglioside binding domain of tetanus toxin (TTX). H(c) retains much of the capacity of tetanus toxin for binding internalization and transport by neurons. For this reason tetanus H(c) has been studied as a vector for delivery of therapeutic proteins to neurons. We directly compared H(c) and TTX in the capacity to bind and be internalized by neurons by ELISA. Primary cultures of dissociated fetal cortical neurons were incubated with equimolar amounts of TTX or H(c). Neuronal associated tetanus protein was 4-8 fold greater on a molar basis with tetanus toxin compared to H(c) (1 h incubation). This increase in neuronal tetanus protein was evident with incubation in concentrations from 0.1 microM to 2 microM. There were greater amounts of TTX delivered to the cultured cells at both 0 degrees C (representing membrane bound tetanus protein) and 37 degrees C (bound and internalized tetanus protein). Unlike H(c), TTX showed significant continued accumulation of protein with increasing incubation durations. Neuronal associated TTX increased 2-3 fold over incubation times ranging from 1 to 8 h. Tetanus toxin appears to be clearly superior to the ganglioside binding fragment (H(c)) in the capacity for neuronal binding and internalization. Atoxic tetanus proteins containing additional molecular domains as well as H(c) may be more suitable vectors for linkage with therapeutic proteins and delivery to neurons.  相似文献   

8.
Structure of tetanus toxin. II. Toxin binding to ganglioside.   总被引:9,自引:0,他引:9  
The interaction between tetanus toxin and ganglioside containing 2 N-acetylneuraminic acid residues linked in sequence to one another has been investigated using a new method involving radioactively labeled ganglioside and tetanus toxin adsorbed to Sephadex matrix. Binding between the two components was demonstrated, and it was calculated that in the nanomolar concentration range, tetanus toxin becomes half-saturated at about 5 X 10(-8) M concentration of ganglioside. Removal of the ceramide portion from the ganglioside resulted in the complete loss of binding activity, whereas removal of the terminal N-acetylneuraminic acid residue from the intact ganglioside had no effect. Among the fragments derived from tetanus toxin (Helting, T. B., and Zwisler, O. (1977) J. Biol. Chem. 252, 187-193), only the heavy chain polypeptide exhibited a binding activity of the same order of magnitude as that observed for the native toxin. The light chain polypeptide showed no interaction with ganglioside and among the fragments derived from the toxin by digestion with papain, only Fragment C, at a high protein concentration, displayed marginal binding activity. Using monovalent antibodies directed against specific regions of the tetanus toxin molecule, it was demonstrated that antibodies directed against Fragment C uniquely interfere with the binding process. Anti-light chain serum was ineffective, as well as antitetanus toxoid serum previously absorbed with Fragment C. It is concluded that the binding site for ganglioside is located on the heavy chain portion of tetanus toxin, possibly in or near the region comprised by Fragment C.  相似文献   

9.
Tetanus Toxin Fragment C Binds to a Protein Present in Neuronal Cell Lines and Motoneurons Tetanus neurotoxin is one of the most powerful protein toxins known, acting in vivo at femtomolar doses. Two main factors determine its high potency: a protease activity restricted to a single intracellular substrate and its absolute neurospecificity. Whereas the enzymatic properties of tetanus toxin have been thoroughly defined, the nature of its neuronal receptor(s) and their involvement in the intracellular trafficking of tetanus toxin are poorly understood. Using binding and crosslinking experiments, we report here on the characterisation of an N-glycosylated 15-kDa interacting protein, which behaves as an integral membrane protein. This putative receptor specifically interacts with the binding domain (fragment C) of tetanus toxin and not with several related botulinum neurotoxins in spinal cord motoneurons and neuronal-like cell lines. Sialic acid-specific lectins antagonise the binding of tetanus toxin to the cell surface and to the 15-kDa protein, supporting the central role of sialic acid residues in the recognition process. Altogether, these results indicate the existence of a neuronal protein receptor for tetanus toxin whose identification is likely to constitute a key step in the analysis of the molecular machinery involved in the toxin internalisation and retrograde transport.  相似文献   

10.
The interaction of 125I-labeled tetanus toxin with PC12 pheochromocytoma cells in monolayer cultures has been examined. Under regular growth conditions, the PC12 cells bind 125I-tetanus toxin to a limited degree compared with dissociated cerebral neuron cultures. After exposure to nerve growth factor for 2 days in low serum-containing media with growth factor supplements, binding of toxin increases over twofold compared with untreated PC12 cells. Binding can also be enhanced (greater than 2.5-fold) after treatment of cells with 2 mM sodium metaperiodate for 20 min. Dissociated cerebral neurons but not fibroblasts in cell culture bind more toxin after periodate treatment. The effect of periodate can be abolished by 5 mM sodium borohydride. A ganglioside isolated from periodate-treated PC12 cells and tentatively identified as GT1b [(N-acetylneuraminyl)galactosyl-N-acetylgalactosaminyl(N- acetylneuraminyl-N-acetylneuraminyl)-galactosyl-glucosylceramide] binds 125I-tetanus toxin on silica gel chromatoplates and on nitrocellulose paper. There are no indications to suggest binding to a polypeptide from treated cells after polyacrylamide gel electrophoresis. Cells artificially supplemented with GT1b and subsequently treated with periodate effectively bind the toxin. The data suggest that modified sialyl groups linked to gangliosides, and not to proteins, are preferential targets for tetanus toxin.  相似文献   

11.
Incubation of primary nerve cell cultures and of crude synaptosomal preparations with neuraminidase released sialic acid from both gangliosides and sialoglycoproteins. After this treatment, the pattern of ganglioside distribution was severely modified with a decrease of polysialogangliosides (GD1b, GT1b, GT1L, GQ1) and a dramatic increase in monosialoganglioside GM1. The choline influx into neuraminidase treated cells and organelles was reduced by 30–50% but the efflux was unmodified. In particular the high affinity mechanism of choline uptake disappeared and the low affinity mechanism was modified in both cases. The disappearance of the high affinity uptake mechanism was not followed by a decreased acetylcholine synthesis as it should be if the current theories on choline uptake and acetylcholine synthesis are correct. Our present data thus confirm our previous hypothesis that choline metabolism regulates choline uptake rather than the other way round as is suggested by the theories most widely accepted at present. Choline uptake was unaffected by pretreatment of cells and organelles with tetanus toxin suggesting that the effect of neuraminidase on the choline uptake were either mediated through glycoproteins or through gangliosides other than those which bind to tetanus toxin (GD1b and GT1b). Several speculative models for explaining the effect of neuraminidase on choline uptake are proposed.  相似文献   

12.
Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface higher gangliosides (GT1A and GT1B) and their interaction with Cholera Toxin. The water mediated hydrogen bonding network exists between sugar residues in gangliosides. An integrated molecular modeling, molecular mechanics, and molecular dynamics calculation of cholera toxin complexed with GT1A and GT1B reveal that, the active site of cholera toxin can accommodate these higher gangliosides. Direct and water mediated hydrogen bonding interactions stabilize these binding modes and play an essential role in defining the order of specificity for different higher ganglioside towards cholera toxin. This study identifies that the binding site of cholera toxin is shallow and can accommodate a maximum of two NeuNAc residues. The NeuNAc binding site of cholera toxin may be crucial for the design of inhibitors that can prevent the infection of cholera.  相似文献   

13.
Tetanus toxin elicits spastic paralysis by cleaving VAMP‐2 to inhibit neurotransmitter release in inhibitory neurons of the central nervous system. As the retrograde transport of tetanus neurotoxin (TeNT) from endosomes has been described, the initial steps that define how TeNT initiates trafficking to the retrograde system are undefined. This study examines TeNT entry into primary cultured cortical neurons by total internal reflection fluorescence (TIRF) microscopy. The initial association of TeNT with the plasma membrane was dependent upon ganglioside binding, but segregated from synaptophysin1 (Syp1), a synaptic vesicle (SV) protein. TeNT entry was unaffected by membrane depolarization and independent of SV cycling, whereas entry of the receptor‐binding domain of TeNT (HCR/T) was stimulated by membrane depolarization and inhibited by blocking SV cycling. Measurement of the incidence of colocalization showed that TeNT segregated from Syp1, whereas HCR/T colocalized with Syp1. These studies show that while the HCR defines the initial association of TeNT with the cell membrane, regions outside the HCR define how TeNT enters neurons independent of SV cycling. This provides a basis for the unique entry of botulinum toxin and tetanus toxin into neurons.   相似文献   

14.
Tetanus toxin binds specifically to motor neurons at the neuromuscular junction. There, it is internalized into vesicular carriers undergoing fast retrograde transport to the spinal cord. Despite the importance of this axonal transport pathway in health and disease, its molecular and biophysical characterization is presently lacking. We sought to fill this gap by determining the pH regulation of this compartment in living motor neurons using a chimera of the tetanus toxin binding fragment (TeNT HC) and a pH-sensitive variant of the green fluorescent protein (ratiometric pHluorin). We have demonstrated that moving retrograde carriers display a narrow range of neutral pH values, which is kept constant during transport. Stationary TeNT HC-positive organelles instead exhibit a wide spectrum of pH values, ranging from acidic to neutral. This distinct pH regulation is due to a differential targeting of the vacuolar (H+) ATPase, which is not present on moving TeNT HC compartments. Accordingly, inhibition of the vacuolar (H+) ATPase under conditions that completely abolish the intracellular accumulation of acidotrophic dyes does not affect axonal retrograde transport of TeNT HC. However, a functional vacuolar (H+) ATPase is required for early steps of TeNT HC trafficking following endocytosis, and it is localized to axonal vesicles containing TeNT HC. Altogether, these findings indicate that the vacuolar (H+ ATPase plays a specific role in early sorting events directing TeNT HC to axonal carriers but not in their subsequent progression along the retrograde transport route, which escapes acidification and targeting to degradative organelles.  相似文献   

15.
Many inherited neurological diseases and cancers could potentially benefit from efficient targeted gene delivery to neurons of the central nervous system. The nontoxic fragment C (HC) of tetanus toxin retains the specific nerve cell binding and transport properties of tetanus holotoxin. The HC fragment has previously been used to promote the uptake of attached proteins such as horseradish peroxidase, beta-galactosidase and superoxide dismutase into neuronal cells in vitro and in vivo. We report the use of purified recombinant HC fragment produced in yeast and covalently bound to polylysine [poly(K)] to enable binding of DNA. We demonstrate that when used to transfect cells, this construct results in nonviral gene delivery and marker gene expression in vitro in N18 RE 105 cells (a neuroblastoma x glioma mouse/rat hybrid cell line) and F98 (a glioma cell line). Transfection was dependent on HC and was neuronal cell type specific. HC may prove a useful targeting ligand for future neuronal gene therapy.  相似文献   

16.
The entry of tetanus neurotoxin into neuronal cells proceeds through the initial binding of the toxin to gangliosides on the cell surface. The carboxyl-terminal fragment of the heavy chain of tetanus neurotoxin contains the ganglioside-binding site, which has not yet been fully characterized. The crystal structures of native H(C) and of H(C) soaked with carbohydrates reveal a number of binding sites and provide insight into the possible mode of ganglioside binding.  相似文献   

17.
Abstract— —Continuous cell lines, primary cell cultures derived from embryonic CNS, and homogenates made from adult and embryonic CNS were compared with respect to their lipid pattern and their ability to bind 125I-labelled tetanus toxin. In parallel experiments de novo synthesis of gangliosides in the cell lines was studied, using [14C]glucosamine as precursor. Of the total lipid only gangliosides were specifically labelled by [14C]glucosamine. The patterns of the de novo synthesized gangliosides corresponded to those present in the respective cells.
Pronounced binding of 125I-labelled toxin was only detectable in tissues containing long-chain gangliosides (ganglioside C which represents GDIb and GTI).
Accordingly, hybrid (neuroblastoma x glioma) cells, due to their lack of long-chain gangliosides, bound just-discernible amounts of labelled toxin. When previously exposed to gangliosides, their binding of tetanus toxin tremendously increased.
It was concluded that only the long-chain gangliosides in the neuronal cells are functionally involved in the binding of the tetanus toxin and that these acceptors of tetanus toxin can be transplanted.  相似文献   

18.
Axonal retrograde transport is essential for neuronal growth and survival. However, the nature and dynamics of the membrane compartments involved in this process are poorly characterized. To shed light on this pathway, we established an experimental system for the visualization and the quantitative study of retrograde transport in living motor neurons based on a fluorescent fragment of tetanus toxin (TeNT HC). Morphological and kinetic analysis of TeNT HC retrograde carriers reveals two major groups of organelles: round vesicles and fast tubular structures. TeNT HC carriers lack markers of the classical endocytic pathway and are not acidified during axonal transport. Importantly, TeNT HC and NGF share the same retrograde transport organelles, which are characterized by the presence of the neurotrophin receptor p75NTR. Our results provide the first direct visualization of retrograde transport in living motor neurons, and reveal a novel retrograde route that could be used both by physiological ligands (i.e., neurotrophins) and TeNT to enter the central nervous system.  相似文献   

19.
The fate of tetanus toxin (mol wt 150,000) subsequent to its retrograde axonal transport in peripheral sympathetic neurons of the rat was studied by both electron microscope autoradiography and cytochemistry using toxin-horseradish peroxidase (HRP) coupling products, and compared to that of nerve growth factor (NGF), cholera toxin, and the lectins wheat germ agglutinin (WGA), phytohaemagglutinin (PHA), and ricin. All these macromolecules are taken up by adrenergic nerve terminals and transported retrogradely in a selective, highly efficient manner. This selective uptake and transport is a consequence of the binding of these macromolecules to specific receptive sites on the nerve terminal membrane. All these ligands are transported in the axons within smooth vesicles, cisternae, and tubules. In the cell bodies these membrane compartments fuse and most of the transported macromolecules are finally incorporated into lysosomes. The cell nuclei, the parallel golgi cisternae, and the extracellular space always remain unlabeled. In case the tetanus toxin, however, a substantial fraction of the labeled material appears in presynaptic cholinergic nerve terminals which innervate the labeled ganglion cells. In these terminals tetanus toxin-HRP is localized in 500-1,000 A diam vesicles. In contrast, such a retrograde transsynaptic transfer is not at all or only very rarely detectable after retrograde transport of cholera toxin, NGF, WGA, PHA, or ricin. An atoxic fragment of the tetanus toxin, which contains the ganglioside-binding site, behaves like intact toxin. With all these macromolecules, the extracellular space and the glial cells in the ganglion remain unlabeled. We conclude that the selectivity of this transsynaptic transfer of tetanus toxin is due to a selective release of the toxin from the postsynaptic dendrites. This release is immediately followed by an uptake into the presynaptic terminals.  相似文献   

20.
Tetanus neurotoxin binds via its carboxyl-terminal H(C)-fragment selectively to neurons mediated by complex gangliosides. We investigated the lactose and sialic acid binding pockets of four recently discovered potential binding sites employing site-directed mutagenesis. Substitution of residues in the lactose binding pocket drastically decreased the binding of the H(C)-fragment to immobilized gangliosides and to rat brain synaptosomes as well as the inhibitory action of recombinant full length tetanus neurotoxin on exocytosis at peripheral nerves. The conserved motif of S(1287)XWY(1290) em leader G(1300) assisted by N1219, D1222, and H1271 within the lactose binding site comprises a typical sugar binding pocket, as also present, for example, in cholera toxin. Replacement of the main residue of the sialic acid binding site, R1226, again caused a dramatic decline in binding affinity and neurotoxicity. Since the structural integrity of the H(C)-fragment mutants was verified by circular dichroism and fluorescence spectroscopy, these data provide the first biochemical evidence that two carbohydrate interaction sites participate in the binding and uptake process of tetanus neurotoxin. The simultaneous binding of one ganglioside molecule to each of the two binding sites was demonstrated by mass spectroscopy studies, whereas ganglioside-mediated linkage of native tetanus neurotoxin molecules was ruled out by size exclusion chromatography. Hence, a subsequent displacement of one ganglioside by a glycoprotein receptor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号