首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substantially new method has been developed to measure protein turnover. Its basis is the notion that in labeling experiments a secreted protein can be used to determine the specific radioactivity of the intracellular amino acid precursor pool. To measure protein turnover in the Reuber hepatoma H4 cell line, cultures were labeled with [3H]leucine for specified periods after which phenylalanine hydroxylase was isolated and its leucine specific radioactivity determined. Serum albumin secreted by the cultures was also isolated and used to estimate the leucine precursor pool specific radioactivity. The protein half-life of phenylalanine hydroxylase could them be calculated. Experiments performed at long and short labeling times and with high and low concentrations of leucine in the medium yielded equivalent results. Phenylalanine hydroxylase half-life in the H4 cells was investigated under both normal and hydrocortisone-induced growth conditions. Average half-lives of 7.4 and 8.2 h were found for induced and uninduced cultures, respectively. Although these measured enzyme half-lives were not essentially different, the steady state level of phenylalanine hydroxylase was increased 6.2-fold upon hydrocortisone induction, from 0.076 to 0.47 microgram/10(6) cells. The results demonstrated that hydrocortisone induces phenylalanine hydroxylase in the H4 cells by causing an increase in the rate of enzyme synthesis.  相似文献   

2.
Stationary-phase, minimal deviation hepatoma H4-II-E-C3 cell cultures that are serum-deprived respond with a biphasic time course of phenylalanine hydroxylase induction when dialyzed fetal calf serum or insulin is added. These two agents induce phenylalanine hydroxylase additively, during both the initial 3-hour and the delayed 24-hour phases. The initial phase of induction by insulin is inhibited by cycloheximide but not by actinomycin D. The delayed induction by both dialyzed fetal calf serum and insulin is inhibited by 10(-6) M cycloheximide and 0.20 mug/ml actinomycin D. H4-II-E-C3 cells in culture do not synthesize the factor(s) in serum that induce phenylalanine hydroxylase.  相似文献   

3.
Phenylalanine hydroxylase in Reuber H4 hepatoma cell cultures can be rapidly inactivated by the addition of epinephrine, norepinephrine, dopamine, or 3,4-dihydroxyphenylalanine, in order of decreasing effectiveness, to the culture medium. The enzyme was 50% inactivated in 1 hour by 25 muM (R)-epinephrine or 45 muM (R)-norepinephrine in the medium. High concentrations of epinephrine caused a 70% inactivation in 15 min. Phenylalanine hydroxylase appears to be reversibly inactivated by epinephrine within the cells; since washing the compound off the cell cultures resulted in a rapid restoration of enzyme activity (40% in 1 hour), cycloheximide had little effect on the initial rate of recovery of enzyme activity and the same amount of phenylalanine hydroxylase antigen per cell was isolated from treated and normal cultures. Both (S)- and (R)-epinephrine inactivated the enzyme, and 0.1 mM desmethylimipramine, an inhibitor of amine transport, significantly decreased the effect of epinephrine on the hydroxylase activity. The possibility, suggested by the above results, that epinephrine might be directly inactivating phenylalanine hydroxylase within the cells was supported by the finding that purified rat liver phenylalanine hydroxylase would be 50% inactivated by 1.5 muM epinephrine in 10 min.  相似文献   

4.
The cell density dependent regulation of phenylalanine hydroxylase activity in Reuber hepatoma (H4) cells growing in monolayer culture has been examined in detail. We found that 48 h or more after subculture phenylalanine hydroxylase activity in the cells is an exponential function of cell density (cells/cm2). No discontinuity in the relationship is seen with the formation of a confluent monolayer.A rapid loss or a rapid gain in enzyme activity in the cells is observed after diluting or concentrating the cell cultures. The two processes appear qualitatively different. The loss in activity is a first order process which starts at the time of subculture with the rate of loss dependent on the density of subculture. The gain in activity begins 6–8 h after subculture to a higher density; it can be blocked by cycloheximide and has a maximum rate of increase that is about 10% of the maximum rate of loss of activity.Using immunochemical procedures, we found the same amount of phenylalanine hydroxylase associated antigen in Reuber cells from low density as from high density cultures, over a range of phenylalanine hydroxylase specific activities from 0.2 to 4.2. After concentrating cells to a higher density, no increase in enzyme antigen was observed, despite a several-fold increase in enzyme activity and a requirement for protein synthesis during the process. These observations imply the presence of an active and inactive phenylalanine hydroxylase with the relative amounts of each determined by the cell density. The effects of db-cAMP are discussed. Evidence is presented here that the hydrocortisone stimulation of phenylalanine hydroxylase activity works through a different mechanism than the cell density dependent process.  相似文献   

5.
The state of phosphorylation of phenylalanine hydroxylase was determined in isolated intact rat hepatocytes. 32P-labeled phenylalanine hydroxylase was immunoisolated from cells loaded with 32Pi or from cell extracts 'back-phosphorylated' with [gamma-32P]ATP by cAMP-dependent protein kinase. The rate of phenylalanine hydroxylase phosphorylation in cells with elevated cAMP was similar to that observed for the isolated enzyme phosphorylated by homogeneous cAMP-dependent protein kinase. The phosphorylation rate in cAMP-stimulated cells was increased up to four times (reaching 0.018 s-1) by the presence of phenylalanine, the phosphate content (mol/mol hydroxylase) increasing to 0.5 from the basal level (0.17) in 50 s. The half maximal effect of phenylalanine was obtained at a physiologically relevant concentration (110 microM). The synthetic phenylalanine hydroxylase cofactor dimethyltetrahydropterin also enhanced the cAMP-stimulated phosphorylation of phenylalanine hydroxylase, presumably by displacing the endogenous cofactor, tetrahydrobiopterin. Phenylalanine was a negative modulator of the phosphorylation of phenylalanine hydroxylase induced by incubating cells with vasopressin or with the phosphatase inhibitor okadaic acid. The same site on the phenylalanine hydroxylase was phosphorylated in response to these two agents as in response to elevated cAMP. The available evidence suggested that not only vasopressin, but also okadaic acid, acted by stimulating the multifunctional Ca2+/calmodulin-dependent protein kinase II or a kinase with closely resembling properties.  相似文献   

6.
Screening of a rat liver cDNA expression library constructed in the vector lambda gt11 with an affinity purified antiserum to rat phenylalanine hydroxylase has resulted in the isolation of two clones which contain the complete coding region (1362 base pairs) of phenylalanine hydroxylase and the entire 3'-untranslated region (562 base pairs). From the nucleotide sequence we deduced the amino acid sequence of the enzyme. The molecular weight is 51,632 (452 amino acids). The rat enzyme is highly homologous to human phenylalanine hydroxylase. The two proteins differ in only 36 amino acids (92% homology), many of which are conservative changes. A dot matrix computer program was used to analyze regions of homology with the amino acid sequence of rat tyrosine hydroxylase. Considerable homology was detected from amino acid 140 in the rat enzyme to the C terminus, but little or no homology was apparent in the N-terminal region. The cDNA clone was used to determine the levels of phenylalanine hydroxylase mRNA in rat tissues using RNA blot hybridization. Two mRNA species were detected, with approximate lengths of 2,000 and 2,400 nucleotides, which appear to derive from use of alternate polyadenylation signals. No difference in mRNA size was found in rats which have different phenylalanine hydroxylase alleles. The kidney was found to contain about 10% of the mRNA found in the liver, and no phenylalanine hydroxylase mRNA was detected in rat brain. Reuber H4 hepatoma cells were also analyzed for phenylalanine hydroxylase mRNA. The parental cells contained mRNA species of the same sizes as in rat liver. Incubation in 10(-6) M hydrocortisone for 24 h resulted in an 18-fold increase in the mRNA level. Mutant hepatoma cells which express very little phenylalanine hydroxylase contained less than 5% of the parental mRNA, but the gene still responded to hydrocortisone.  相似文献   

7.
Incubation of H4-II-E-C3 rat hepatoma cells with either hydrocortisone or dexamethasone resulted in 3- to 5-fold increases in the levels of both phenylalanine hydroxylase and its essential cofactor, tetrahydrobiopterin. Maximum elevation of phenylalanine hydroxylase was noted after 24 h of incubation, whereas significant increases in tetrahydrobiopterin were found only after 48 h exposure of the cells to glucocorticoids. Removal of hormone from the culture medium resulted in rapid loss of cell tetrahydrobiopterin, but a much slower decline in the level of phenylalanine hydroxylase. Thus, although the levels of both phenylalanine hydroxylase and tetrahydrobiopterin in rat hepatoma cells are regulated by glucocorticoids, this regulation is apparently not strictly coordinated. Nevertheless, control of cellular tetrahydrobiopterin levels may be an important regulator of hepatic phenylalanine catabolism since significant increases in the ability of intact rat liver cells to hydroxylate phenylalanine were observed only after 48 h exposure to glucocorticoids, in correlation with increases in cell tetrahydrobiopterin content.  相似文献   

8.
The synthetic rate of prealbumin and albumin in primary monolayer cultures of rat hepatocytes was measured by immunochemical methods. The isolated hepatocytes synthesized these proteins in the same ratio as that previously found for the whole body synthesis in vivo. It is concluded that the hepatocytes synthesize the main part of prealbumin in the rat.  相似文献   

9.
Mouse erythroleukemia (MEL) cells do not synthesize any detectable level of phenylalanine hydroxylase and thus do not grow in Tyr- medium. Rat hepatoma cells that constitutively express phenylalanine hydroxylase were treated prior to fusion with MEL cells with biochemical inhibitors to inactivate different macromolecular components of the cells, and the fusion products were selected in Tyr- medium. Continuously growing populations of cells resembling the parental MEL cells and expressing mouse phenylalanine hydroxylase were obtained only when rat hepatoma cells treated with mitomycin or iodoacetamide, which inactivate DNA and SH proteins, respectively, were fused with MEL cells. Fusion of MEL cells with UV-treated rat hepatoma cells did not result in the activation of the mouse phenylalanine hydroxylase gene. UV treatment damages both DNA and RNA. These data suggested that RNA was involved in the regulation of phenylalanine hydroxylase gene. Additional evidence for the role of RNA in the phenylalanine hydroxylase gene regulation was obtained from RNA transfection studies. RNA only from cells which express phenylalanine hydroxylase, such as rat hepatoma cells and MEL cybrids, when introduced into MEL cells by the CaPO4 coprecipitation method, resulted in the permanent activation of the mouse phenylalanine hydroxylase gene.  相似文献   

10.
11.
Significant levels of prolyl hydroxylase activity (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase; EC 1.14.11.2) have been found in freshly isolated hepatocytes prepared from normal or regenerated adult rat liver and primary non-proliferating monolayer cultures of these cells. Four days after partial hepatectomy, the intact regenerated liver contained two times the normal level of prolyl hydroxylase activity. Freshly isolated hepatocytes contained 24% of the total prolyl hydroxylase activity in normal liver and 47% of that in regenerated liver. Upon incubation of hepatocytes for 24 h in a chemically defined culture medium containing insulin, prolyl hydroxylase activity rose 2- to 3-fold, and gradually declined during the next 48 h. The rise in prolyl hydroxylase activity was blocked by addition of cycloheximide to the culture medium. The presence of prolyl hydroxylase activity in hepatocyte cultures was not likely due to contamination with non-parenchymal liver cells. The latter cells contained less than 20% of the total enzyme activity recovered in all cells isolated from the liver. Furthermore, prolyl hydroxylase was localized by immunofluorescence uniformly to the hepatocytes in culture. Cultured hepatocytes converted [14C]proline to [14C]hydroxyproline at rates comparable to those reported for whole liver. However, only a small portion of the hydroxyproline containing product was present as collagen protein, suggesting its rapid degradation in culture. We conclude that the liver parenchymal cell may actively participate in collagen synthesis and possibly in collagen degradation.  相似文献   

12.
In primary cultures of new-born rat liver tissue, albumin and frbrinogen, two proteins normally synthesized by the liver and secreted into plasma were demonstrated by specific antibodies labelled with peroxidase in about 50 and 70% of the hepatocytes; these proteins were not demonstrated in the other types of cells, in particular fibroblasts, present in primary cultures. These two proteins were detected on the ribosomes of the rough endoplasmic reticulum and were also present in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus. It is concluded that
1. 1. In primary cultures of liver tissue, only the hepatocytes synthesize albumin and fibrinogen.
2. 2. Proliferating cultured hepatocytes are able to synthesize albumin and fibrinogen.
3. 3. The presence of detectable albumin and fibrinogen in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus in hepatocytes of primary cultures and their absence in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus in the hepatocytes of adult rat liver might indicate an alteration in the translocation of albumin and fibrinogen through these organelles in cultured hepatocytes.
  相似文献   

13.
Variation in hepatic metabolism between species may be an important factor in the differences observed in chemical carcinogenesis. We examined 6 chemicals representative of 4 chemical classes in the in vitro hepatocyte DNA repair assay using cells isolated from the Fischer-344 rat, B6C3F1 mouse, Syrian golden hamster, cynomolgus monkey and from human liver. Hepatocytes were isolated by in situ or biopsy liver perfusion and incubated with [3H]-thymidine and the test chemical. Unscheduled DNA synthesis (UDS) was measured as net grains/nucleus (NG) by quantitative autoradiography. Qualitative and quantitative differences in UDS responses were observed for every chemical. Liver cultures isolated from the rat, mouse, hamster, human, and monkey and treated with aflatoxin B1 or dimethylnitrosamine all yielded dose-related increases in NG. Human, rat, and hamster hepatocyte cultures yielded positive responses following exposure to the aromatic amines 2-acetylaminofluorene, 4-aminobiphenyl, and benzidine, whereas cultures isolated from the monkey and mouse yielded less than 0 NG. Treatment with benzo[a]pyrene (BAP) produced strong positive responses in monkey and human hepatocyte cultures, weak positive responses in hamster cultures, and equivocal or negative responses in rat and mouse hepatocyte cultures. Hepatocyte function was assessed by measurement of DNA content, glutathione content, BAP hydroxylase activity, p-nitroanisole-O-demethylase activity, p-nitrophenol conjugation, and urea synthesis rates. The functional capabilities of isolated hamster, monkey, and human hepatocyte cultures do not appear to correlate with UDS responses observed for any compound; however, they indicate that the cultures were metabolically competent at the time of chemical exposure. These studies suggest that rat hepatocytes are a suitable model for human hepatocytes, whereas mouse and male monkey hepatocytes may be insensitive to aromatic amines.  相似文献   

14.
The hydrocortisone stimulation of phenylalanine hydroxylase activity in Reuber H4 hepatoma cells is shown to be associated with an alteration in phenylalanine hydroxylase isozyme composition. Three forms of phenylalanine hydroxylase were identified in H4 cells which have been treated with hydrocortisone; however, only one of these forms appears to be present prior to glucocorticoid treatment. The relative amounts, as well as the total amount, of the three forms and their chromatographic behavior on hydroxylapatite are nearly identical to the three phenylalanine hydroxylase isozymes found in adult rat liver. The hydroxylase isozyme composition in 2 day old rats is similar to that found in adult rats and in H4 cells treated with hydrocortisone.  相似文献   

15.
The mechanism by which p-chlorophenylalanine specifically reduces phenylalanine hydroxylase activity in rat liver in vivo and in Reuber H4 hepatoma cells in culture has been investigated. Chromatography on hydroxylapatite of liver extract from rats injected with p-chlorophenylalanine showed that the compound differentially affected the three normal phenylalanine hydroxylase isoenzymes (I, II, and III); isoenzymes II and III were completely absent after the treatment, but isoenzyme I was only reduced in quantity compared with normal adult rats. Normal Reuber H4 cells only possess isoenzyme I; treatment with p-chlorophenylalanine yielded a reduced level of enzyme activity which appeared to be noraml isoenzyme I by both chromatographic and kinetic criteria. There is evidence, based on immunochemical techniques, that cultures grown in the presence of p-chlorophenylalanine have significantly reduced levels of phenylalanine hydroxylase antigen, and that p-chlorophenylalanine inactivates phenylalanine hydroxylase at or near the time of enzyme synthesis. The bulk of enzyme synthesized prior to the addition of the compound appears unaffected by it. There is no indication that protein synthesis itself is affected by p-chlorophenylalanine. In addition, p-chlorophenylacetate was found to inactivate phenylalanine hydroxylase in an apparently identical manner with p-chlorophenylalanine, which almost certainly eliminates from consideration any mechanism of inactivation specifically requiring an amino acid. Finally, effects of cycloheximide and chlorophenylalanine were compared. Taken together, the data lead to two possible models for the inactivation of the enzyme. The model most consistent with all data requires (predicts) the existence of a proenzyme form of phenylalanine hydroxylase which can be specifically inactivated by p-chlorophenylalanine.  相似文献   

16.
When freshly-dispersed rat hepatocytes are maintained in primary monolayer cultures, they quickly lose their capacity to synthesize the urea cycle enzyme, carbamoyl-phosphate synthase. The ability to synthesize many other proteins, e.g., serum proteins including albumin, is retained. After an initial recovery period following cell isolation (24-48 h), glucagon is able to restore the ability of cultured hepatocytes to make carbamoyl-phosphate synthase. mRNA encoding the enzyme is about 4-times higher in hepatocytes maintained for 48 h in the presence of glucagon compared to hepatocytes without the hormone, as judged by in vitro translational assays. The level of carbamoyl-phosphate synthase activity expressed in transformed hepatocytes is unique to each hepatoma. Here we show that Morris hepatoma 5123D has retained such expression, and actively synthesizes the enzyme when 5123D cells are placed in monolayer cultures. Unlike normal hepatocytes, however, synthesis continues uninterrupted at a high level whether or not glucagon is present. 5123D has higher levels of translatable carbamoyl-phosphate synthase mRNA than normal liver.  相似文献   

17.
The expression of phenylalanine hydroxylase activity in rat-hepatoma cells in culture (line H4-II-E-C3) is a function of culture density: under normal growth conditions in the presence or in the absence of exogenously added hydrocortisone, the levels of this enzyme are low in subconfluent cell populations, but increase steeply as cultures attain confluency. This phenomenon (i) is not an artifact of the subcultivation process and (ii) is not produced by some alteration in the growth medium effected by high-density cultures. The levels of phenylalanine hydroxylase in high-density cultures of H4-II-E-C3 cells in the presence of serum plus added hydrocortisone are at least 80% of those seen in adult-rat liver. It is concluded that this density-associated phenomenon is the result of an intrinsic property of H4-II-E-C3 cells and possibly constitutes a form of epigenetic control governing the sensitivity of these cells to stimulation by serum or by serum plus hydrocortisone.  相似文献   

18.
Transformation of isolated rat hepatocytes with simian virus 40   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat hepatocytes were transformed by simian virus 40 (SV40). Hepatocytes from two different strains of rats and a temperature-sensitive mutant (SV40tsA 1609), as well as wild-type virus were used. In all cases, transformed cells arose from approximately 50% of the cultures containing hepatocytes on collagen gels or a collagen gel-nylon mesh substratum. Cells did not proliferate in mock-infected cultures. SV40-transformed hepatocytes were epithelial in morphology, retained large numbers of mitochondria, acquired an increased nucleus to cytoplasm ratio, and contained cytoplasmic vacuoles. Evidence that these cells were transformed by SV40 came from the findings that transformants were 100% positive for SV40 tumor antigen expression, and that SV40 was rescued when transformed hepatocytes were fused with monkey cells. All SV40-transformed cell lines tested formed clones in soft agarose. Several cell lines transformed by SV40tsA 1609 were temperature dependent for colony formation on plastic dishes. Transformants were diverse in the expression of characteristic liver gene functions. Of eight cell lines tested, one secreted 24% of total protein as albumin, which was comparable to albumin production by freshly plated hepatocytes; two other cell lines produced 4.2 and 5.7%, respectively. Tyrosine aminotransferase activity was present in five cell lines tested but was inducible by dexamethasone treatment in only two. We conclude from these studies that adult, nonproliferating rat hepatocytes are competent for virus transformation.  相似文献   

19.
Continued high levels of phenylalanine hydroxylase in cultured H4-II-E-C3 rat hepatoma cells require either serum or glucocorticoids in the culture medium. Upon withdrawal of serum, cellular phenylalanine hydroxylase levels decay exponentially with a half-life of 22 hours for about 60 hours, after which time a low, constant enzyme content persists for at least 96 hours. This decline of phenylalanine hydroxylase is fully reversible; normal enzyme levels are restored in a time- and dosage-dependent fashion upon addition of serum to basal cultures. The serum factor is nondialyzable and moderately heat-stable. The stimulation by serum of the phenylalanine hydroxylas content of basal cultures is blocked by 3-[2-(3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]glutarimide and requires ongoing cellular protein synthesis. When added to the enzyme-assay mixture in vitro, serum does not alter the phenylalanine hydroxylase activity of extracts from basal cultures. Three lines of evidence suggest that serum contains a nonsteroidal phenylalanine hydroxylase stimulatory components(s): (a) glucocorticoid antagonists inhibit less than one-half of the biological activity of serum; (b) exhaustive extraction of endogenous serum glucocorticoids with charcoal reduces the activity of serum to about one-half of control values; and (c) the stimulatory effects of charcoal reduces the values; and (c) the stimulatory effects of charcoal-extracted serum and hydrocortisone are additive. The phenylalanine hydroxylase stimulatory activities of the charcoal-extracted sera from four mammalian species and from three stages in development in one mammalian species are comparable. A survey of partially purified preparations of a number of known hormones failed to reveal any one capable of elevating the phenylalanine hydroxylas levels of basal cultures in a manner comparable to that of charcoal-extracted serum.  相似文献   

20.
Glucagon addition to isolated rat hepatocytes increases the level of Cyclic AMP inside the cells and the activity of the enzyme phenylalanine hydroxylase. These effects of glucagon are time and dose dependent and are detectable at hormone concentration as low as 0.02nM. The glucagon concentrations causing half-maximal increases in Cyclic AMP production and phenylalanine hydroxylase activity are 0.2nM and 0.1 nM respectively. When hepatocytes are incubated with norepinephrine or the ionophore A23187, at concentrations between 1 nM and 10 μM, a slight increase in enzyme activity is seen only at the highest dose of either drug. The effect of norepinephrine can be completely antagonized by 20 μM propranolol but not by 20 μM ergocryptine. These results suggest that the activity of phenylalanine hydroxylase can be hormonally regulated, in vivo, through a phosphorylation mechanism catalyzed by a Cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号