首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral and cellular factors responsible for parvovirus target cell specificity have been examined for two serologically indistinguishable strains of the minute virus of mice which infect mouse cells of dissimilar differentiated phenotype. Both the prototype strain and the immunosuppressive strain grow in and form plaques on monolayers of simian virus 40-transformed human fibroblasts, a finding that has allowed the comparison of several aspects of their virus-host cell interactions. Although closely related by antigenic and genomic criteria, both the prototype strain and the immunosuppressive strain are restricted for lytic growth in each other's murine host cell, that is, in T cells and fibroblasts, respectively. The host range of each virus variant appears to be specified by a genetic determinant that is stably inherited in the absence of selection. In the restrictive virus-host interaction lytic growth is limited to a small or, in some cases, undetectable subset of the host cell population, and the majority of the infected cells remain viable, continuing to grow at the normal rate without expressing viral antigens. The susceptible host cell phenotype is dominant in T lymphocyte x fibroblast fusion hybrids, implying that different cell types express different developmentally regulated virus helper functions that can only be exploited by the virus variant that carries the appropriate strain-specific determinant.  相似文献   

2.
《Seminars in Virology》1995,6(5):311-317
Host ranges of parvoviruses are complex, and depend on both the strain of virus and on the cell or animal being inoculated. Viruses similar to feline panleukopenia virus infect cats and cat cells in tissue culture, as well as a variety of other host animals and their cultured cells. Canine isolates infect dogs and cultured canine cells, but replication in cats depends on the type of virus. Feline and canine host ranges are determined primarily by a small number of sequence differences in the capsid protein. DNA sequences of viruses from cats, mink, raccoons and foxes could not be readily distinguished from each other. Viruses from dogs or raccoon dogs formed a distinct group, which was subdivided between the two antigenic types. Host ranges of other parvoviruses—minute virus of mice and porcine parvovirus—are also mediated primarily by sequences in the capsid protein gene, although differences in the non-structural protein genes of the minute virus of mice determine some host-range differences.  相似文献   

3.
Nucleotide changes at both codons 317 and 321 in the VP2 capsid gene of the immunosuppressive strain of the murine parvovirus minute virus of mice, MVM(i), are required to create a virus capable of growing in A9 fibroblasts. This double mutant virus, ILB1, has growth characteristics very similar to those of the prototype fibrotropic strain MVM(p) in both single- and multiple-round infections of fibroblasts and is about 100-fold better at infecting fibroblasts than MVM(i). When only one nucleotide position is changed, either in codon 317 (as in ILB2) or in codon 321 (as in ILB3), the resulting viruses are less than twice as efficient as their parent MVM(i) at infecting fibroblasts. In the restrictive infection of A9 cells by the single mutants and MVM(i), gene expression and DNA replication were markedly reduced compared with ILB1 infection of the same cells or compared with infections of permissive hybrid cells by each of the viruses. This suggests that restriction acts predominantly at an early step in the infection. Since the phenotypes of ILB2 and ILB3 are essentially indistinguishable in restrictive infections, it is most likely that the individual loci affect the same step in the viral life cycle. The dramatic increase in fibroblast infectivity shown by ILB1 indicates a synergistic interaction between these two amino acid residues in the same rate-limiting process in fibroblast infection.  相似文献   

4.
Interferon is one determinant of host resistance. The immune responses, cellular or humoral, are other components. Cell-mediated responses appear to be involved in host resistance to certain viral infections, particularly the herpesvirus group and vaccinia virus. It is suggested that immune and interferon responses may complement one another and contribute to host resistance. The relative importance of each component depends upon the virus-host interaction. Finally, evidence has been presented which suggests that production of interferon as a result of antigen-sensitized cell interaction may further link these two components of the host response.  相似文献   

5.
Two strains of minute virus of mice (MVM) show different host cell specificities. The prototype strain MVM(p) grows in fibroblasts, whereas the immunosuppressive variant MVM(i) grows in T lymphocytes. In this study, we have mapped on the viral genome a cell type-specific determinant: it is located between 69 and 85 map units in a region coding for the viral capsid proteins. The DNA of MVM(p) does not replicate in lymphocytes. MVM(i) cannot help MVM(p) grow in lymphocytes; thus the determinant acts in a cis fashion. We did not detect viral mRNA during a restrictive infection of lymphocytes with MVM(p). However, when the same cells were transfected with cloned DNA, both MVM(p) and MVM(i) DNAs were transcribed with the same efficiency from both promoters and the RNA was processed normally. Therefore, the specificity determinant is not a cell type-specific enhancer.  相似文献   

6.
We previously described a persistent infection established by the lymphotropic minute virus of mice in mouse L cells at the level of the cell population (D. Ron, P. Tattersall, and J. Tal, J. Virol. 52:63-69, 1984). This carrier state is maintained by a series of consecutive phenotypic changes which take place in both the cells and the virus and is cured spontaneously after 150 to 200 cell generations (D. Ron and J. Tal, J. Virol. 55:424-430, 1985). We show here that the cure was caused by the selection of virus-resistant cells in the culture. The resistance of these survivor cells to virus replication was due to an intracellular block. Infection of a spontaneously cured culture with the fibrotropic parental minute virus of mice resulted in a restrictive infection in which the viral replicative-form DNA was formed and amplified, but the synthesis of single-stranded progeny DNA was markedly reduced. The lymphotropic strain was blocked in these cells at an earlier stage, with little or no amplification of viral replicative-form DNA observed. These data indicate that the replication of minute virus of mice requires host-coded helper functions in at least two stages of its growth cycle.  相似文献   

7.
Minute virus of mice (i), the lymphotropic strain of minute virus of mice, established a persistent infection in normally restrictive L cells. The carrier state, which lasted 150 days, exhibited three clearly distinguishable stages. During the early stage (days 1 to 10 postinfection), small amounts of virus were formed. A "crisis" then developed that lasted 50 to 60 days and was characterized by massive cell lysis and high titers of virus. This was followed by a 70- to 80-day period in which small but stable quantities of virus were produced. Virus shed by the carrier culture during the latter phase had acquired an altered host range, namely, it had lost its ability to replicate in T-lymphocyte cell lines and had adapted to growth in L cells. Virus isolated at this time from a single plaque in L cells, designated hr301, was shown to possess similar host range properties. No differences, however, could be found between the DNAs of minute virus of mice (i) and of hr301 by restriction enzyme analysis, suggesting that the mutation that affected the viral host range did not involve an extensive region of the viral genome.  相似文献   

8.
EcoRI fragments containing integrated viral and adjacent host sequences were cloned from two polyoma virus-transformed cell lines (7axT and 7axB) which each contain a single insert of polyoma virus DNA. Cloned DNA fragments which contained a complete coding capacity for the polyoma virus middle and small T-antigens were capable of transforming rat cells in vitro. Analysis of the flanking sequences indicated that rat DNA had been reorganized or deleted at the sites of polyoma virus integration, but none of the hallmarks of retroviral integration, such as the duplication of host DNA, were apparent. There was no obvious similarity of DNA sequences in the four virus-host joins. In one case the virus-host junction sequence predicted the virus-host fusion protein which was detected in the transformed cell line. DNA homologous to the flanking sequences of three out of four of the joins was present in single copy in untransformed cells. One copy of the flanking host sequences existed in an unaltered form in the two transformed cell lines, indicating that a haploid copy of the viral transforming sequences is sufficient to maintain transformation. The flanking sequences from one cell line were further used as a probe to isolate a target site (unoccupied site) for polyoma virus integration from uninfected cellular DNA. The restriction map of this DNA was in agreement with that of the flanking sequences, but the sequence of the unoccupied site indicated that viral integration did not involve a simple recombination event between viral and cellular sequences. Instead, sequence rearrangements or alterations occurred immediately adjacent to the viral insert, possibly as a consequence of the integration of viral DNA.  相似文献   

9.
Human prostate cells chronically infected with the Mantooth strain of subacute sclerosing panencephalitis (SSPE) virus multiply normally, fuse only occasionally to form giant cells, and yet have twisted intracytoplasmic nucleocapsids. These cells are able to support replication of vesicular stomatitis virus, although they release only small amounts of SSPE virus. To determine why carrier cells do not produce virus, they were examined with techniques for surface replication, freeze-fracturing, and immunoperoxidase labeling with SSPE antibody. The surface of carrier cells, like that of productive cells, is characterized by ridges crowned with viral antigens and devoid of the intramembrane particles revealed by freeze-fracture techniques. Since surface ridges form where nucleocapsids attach to the membrane, the shape and length of ridges are indicative of the shape and length of the underlying nucleocapsid. Whereas ridges on productive cells are serpentine in shape, those on carrier cells are typically straight or hairpin shaped, and the hairpin ridges are twice as long as serpentine ridges on productive cells. Furthermore, the spacing between ridges on carrier cells is never as small as that in productive infections, so that continuous sheets of viral membrane are never formed. The majority of carrier cells lack the round viral buds observed in productive cells but have, instead, many elongated processes attached to the cell surface. Each of these processes contains one or two hairpin ridges overlying hairpin-shaped nucleocapsids. These "hairpin buds" are restricted to a single region of the carrier cell surface, whereas viral buds are distributed over the entire surface of productive cells. Thus, there are several structural defects in carrier cells that depend on the specific interaction of a certain viral strain with a certain cell type. These defects prevent the deployment of viral antigen in some regions of the cell surface, the formation of nucleocapsids of normal length, the coiling of attached nucleocapsids, and the consolidation of sheets of viral membrane into spherical buds with the nucleocapsids coiled inside. These defects may account for the failure of carrier cells to shed infectious virus.  相似文献   

10.
W Chen  R S Baric 《Journal of virology》1996,70(6):3947-3960
Persistent infection of murine astrocytoma (DBT) cells with mouse hepatitis virus (MHV) has been established. From this in vitro virus-host system, persistence is mediated at the level of cellular MHV receptor (MHVR) expression and increased virus virulence. MHV persistence selects for resistant host cell populations which abate virus replication. Reductions in MHVR expression were significantly associated with increased host resistance, and transfection of MHVR into resistant host cells completely restored the capacity of cells to support efficient replication of MHV strain A59. The emergence of resistant host cells coselected for variant viruses that had increased avidity for MHVR and also recognized different receptors for entry into resistant cells. These data illustrate that MHV persistence in vitro provides a model to identify critical sites of virus-host interaction at the cellular level which are altered during the evolution of host cell resistance to viral infection and the coevolution of virus virulence.  相似文献   

11.
The fibrotropic and lymphotropic strains of minute virus of mice are each unable to grow lytically in the differentiated host cell type of the other strain. To map the viral sequence responsible for the target cell specificities of the two strains, we constructed chimeric viral genomes in vitro from infectious genomic clones. The phenotypes of viral progeny derived from the chimeric genomes were tested by transfecting the plasmids into fibroblast monolayers and assaying plaque formation and by testing stocks of the recombinant viruses for cytotoxicity in fibroblast and lymphocyte cultures. Both the fibrotropic and lymphotropic determinants mapped to the same 237-nucleotide sequence within the coding region of the virus structural gene. A second sequence, near the viral promoter at map unit 38, was also shown to affect viral growth in fibroblast host cells profoundly.  相似文献   

12.
Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblasts cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties.  相似文献   

13.
Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.Subject terms: Bacteriophages, Metagenomics  相似文献   

14.
Host-Dependent Restriction of Mengovirus Replication   总被引:5,自引:2,他引:3       下载免费PDF全文
Mengovirus infection of a restrictive cell line, Maden's bovine kidney (MDBK), results in a virus yield 1,000-fold less than that obtained from productively infected cell lines such as L cells or Ehrlich ascites tumor cells (EAT). Cells of both types of host systems are infected with comparable efficiencies and are completely killed as a consequence of infection. Infective center assays, coupled with the observation of total cell killing, suggest that comparable numbers of cells synthesize viral antigen and release virus in both types of host system. Viral-specific ribonucleic acid (RNA) synthesis is initiated and proceeds in an identical fashion for approximately 4 hr after the infection of MDBK, EAT, or L-cells. At this time, viral RNA synthesis in MDBK ceases, whereas viral RNA synthesis in EAT and L-cells continues at a linear rate. These results indicate that none of the early viral events leading to the initiation of viral-specific RNA synthesis constitutes the primary site of mengovirus restriction in MDBK. Rather it appears that the cessation of viral RNA synthesis in restrictive cells constitutes the primary limiting event. Based on its delayed interaction with mengovirus RNA synthesis, it appears that the host-related restrictive agent is initially compartmentalized and then released as a consequence of infection subsequent to those early events in mengovirus infection leading to the initiation and continued synthesis of viral RNA.  相似文献   

15.
Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses a distinct receptor complex for signaling that is not present on all cell types. Since type I IFN receptor-deficient mice (IFNAR1(0/0)) exhibit greatly increased susceptibility to various viral diseases, it remained unclear to which degree IFN-lambda might contribute to innate immunity. To address this issue we performed influenza A virus infections of mice which carry functional alleles of the influenza virus resistance gene Mx1 and which, therefore, develop a more complete innate immune response to influenza viruses than standard laboratory mice. We demonstrate that intranasal administration of IFN-lambda readily induced the antiviral factor Mx1 in mouse lungs and efficiently protected IFNAR1(0/0) mice from lethal influenza virus infection. By contrast, intraperitoneal application of IFN-lambda failed to induce Mx1 in the liver of IFNAR1(0/0) mice and did not protect against hepatotropic virus infections. Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants lacking the IFN-antagonistic factor NS1. Interestingly, the double-knockout mice were not more susceptible against hepatotropic viruses than IFNAR1(0/0) mice. From these results we conclude that IFN-lambda contributes to inborn resistance against viral pathogens infecting the lung but not the liver.  相似文献   

16.
The cytolytic effect of the autonomous parvovirus minute virus of mice, prototype strain (MVMp), was studied in cultures of ts 339/NRK rat cells that display a temperature-sensitive transformed phenotype as a result of their transformation with a Rous sarcoma virus strain matured in the v-src oncogene. A shift from restrictive (39.5 degrees C) to permissive (34.5 degrees C) temperature was associated with a marked sensitization of these cells to killing by MVMp. In contrast, ts 339/NRK cell derivatives supertransformed with a wild-type src oncogene were sensitive to MVMp at both temperatures, suggesting that the expression of a functional oncogene product may determine, at least in part, the extent of the parvoviral cytopathic effect. Although ts 339/NRK cells were quite resistant to parvoviral attack at 39.5 degrees C, they were similarly proficient in MVMp uptake, viral DNA and protein synthesis, and infectious particle production at both permissive and restrictive temperatures. Consistently, electron microscopic examination of infected ts 339/NRK cultures incubated at 39.5 degrees C revealed the presence, in the majority of the cells, of numerous full and empty virions that were predominantly located in autophagic-type vacuoles. Thus, in this system, the reversion of transformed and MVMp-sensitive phenotypes appears to correlate with the setting up of a noncytocidal mode of parvovirus production. These results raise the possibility that the physiological state of host cells may affect their susceptibility to parvoviruses by modulating not only their capacity for virus replication but also cellular processes controlling the cytopathic effect of viral products.  相似文献   

17.
The early interactions between parvoviruses and host cells have not been extensively described previously. In this study we have characterized some aspects of viral binding to the cell surface and demonstrated the existence of specific cellular receptor sites for minute virus of mice (MVM) on two murine cell lines that are permissive for viral growth. The interaction had a pH optimum of 7.0 to 7.2, and both the rate and extent of the reactions were slightly affected by temperature. Mouse A-9 cells (L-cell derivative) had approximately 5 X 10(5) specific MVM binding sites per cell, and Friend erythroleukemia cells had 1.5 X 10(5) MVM sites per cell. In contrast, the nonpermissive mouse lymphoid cell line L1210 lacked specific viral receptors. Also, cloned lines of A-9 cells resistant to viral infection have been isolated. One of these lines lacked the "specific" virus attachment sites but exhibited low levels of nonsaturable virus binding. Based on these examples, infectivity is correlated with the presence of specific viral receptors on the cell surface.  相似文献   

18.
Persistent/latent viral infections of insect cells are a prominent though poorly understood phenomenon. In this study, the long-term association between the Hz-1 virus and insect host cells, conventionally referred to as persistent viral infection, is described. With the aid of a newly developed fluorescent cell-labeling system, we found that productive viral replication occurs by spontaneous viral reactivation in fewer than 0.2% of persistently infected cell lines over a 5-day period. Once viral reactivation takes place, the host cell dies. The persistently infected cells contain various amounts of viral DNA, and, in an extreme case, up to 16% of the total DNA isolated from infected cells could be of viral origin. Both pulsed-field gel electrophoresis and in situ hybridization experiments showed that some of these viral DNA molecules are inserted into the host chromosomes but that the rest of viral DNA copies are free from host chromosomes. Thus, Hz-1 virus is the first nonretroviral insect virus known to insert its genome into the host chromosome during the infection process. These data also suggest that the previously described persistent infection of Hz-1 virus in insect cells should be more accurately referred to as latent viral infection.  相似文献   

19.
Itah R  Tal J  Davis C 《Journal of virology》2004,78(17):9474-9486
Productive infection by the murine autonomous parvovirus minute virus of mice (MVM) depends on a dividing cell population and its differentiation state. We have extended the in vivo analysis of the MVM host cell type range into the developing embryo by in utero inoculation followed by further gestation. The fibrotropic p strain (MVMp) and the lymphotropic i strain (MVMi) did not productively infect the early mouse embryo but were able to infect overlapping sets of cell types in the mid- or late-gestation embryo. Both MVMp and MVMi infected developing bone primordia, notochord, central nervous system, and dorsal root ganglia. MVMp exhibited extensive infection in fibroblasts, in the epithelia of lung and developing nose, and, to a lesser extent, in the gut. MVMi also infected endothelium. The data indicated that the host ranges of the two MVM strains consist of overlapping sets of cell types that are broader than previously known from neonate and in vitro infection experiments. The correlation between MVM host cell types and the cell types that activate the transgenic P4 promoter is consistent with the hypothesis that activation of the incoming viral P4 promoter by the host cell is one of the host range determinants of MVM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号