首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A list of the Annonaceae taxa native to the Indo‐Burmese Region is presented. Species are listed with synonyms and types, and the regional distribution is given by country (India, Sri Lanka, Pakistan, Nepal, Bhutan, Bangladesh and Burma). In total, 195 species from 28 genera are listed. Two new combinations, Monoon nitidum (A. DC.) I. M. Turner and Polyalthia malabarica (Bedd.) I. M. Turner, are included. Polyalthia corticosa (Pierre) Finet & Gagnep. is considered the correct name for P. obliqua in India and Bangladesh. Artabotrys cubittii Chatterjee is reduced to a synonym of A. burmanicus A. DC. Two new records for Burma, Polyalthia bullata King and Uvaria hahnii (Finet & Gagnep.) J. Sinclair, are presented.  相似文献   

3.
喜马拉雅山脉是全球著名的生物多样性热点地区之一。该研究对以往收集的喜马拉雅山脉南、北坡植物物种名录及其分布数据进行整合,借助在线数据库对分布数据进行补充与修订,最后整理并汇总了喜马拉雅山脉位于中国、印度、尼泊尔、不丹4国境内的种子植物分布情况,并在此基础上对科属特征、物种组成相似性、区系成分以及海拔梯度上物种分布格局进行分析,为该区域的生物多样性研究以及保护提供数据支撑。结果表明:(1)喜马拉雅山脉共分布有种子植物11 875种,隶属223科2 086属,其中包含7 906种草本植物(66.6%),2 583种灌木(21.8%)和1 386种乔木(11.7%)。(2)研究区涵盖物种数量位于前20的科有菊科(Asteraceae)、兰科(Orchidaceae)、禾本科(Poaceae)、豆科(Fabaceae)、杜鹃花科(Ericaceae)等科,共包含物种7 456种,约占喜马拉雅山脉植物种的62.8%;涵盖物种数量位于前20的属有杜鹃花属(Rhododendron)、报春花属(Primula)、马先蒿属(Pedicularis)、虎耳草属(Saxifraga)、薹草属(Carex)...  相似文献   

4.
Abstract The melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), has been the subject of worldwide quarantine and management efforts due to its widespread agricultural impact and potential for rapid range expansion. From its presumed native distribution in India, this species has spread throughout the hot‐humid regions of the world. We provide information that reveals population structure, invasion history and population connectivity from 23 locations covering nine countries based on DNA sequences of the mitochondrial cytochrome oxidase I (COI) gene. Forty‐two polymorphic sites were described among 38 haplotypes. The most common haplotype, H1, was observed in 73% of the samples distributed among all populations. Highest genetic diversity was seen within populations, and no isolation‐by‐distance was detected. The western regions (Nepal, Bangladesh, Thailand, Burma and China‐west) showed higher haplotype diversity than eastern regions (China‐east). China‐Yunnan showed highest levels of genetic diversity in China. Haplotype diversity decreased with longitude from west to east. Together, these analyses suggest that B. cucurbitae has expanded from west to east within a limited geographic scale and recently invaded China through Yunnan Province.  相似文献   

5.
Golden langurs (Trachypithecus geei) are an endangered primate species in Bhutan. We discuss their evolution in terms of phylogeny, ecology, and biogeography. We test the hypothesis that rivers and mountains in Bhutan isolated a population of capped langurs (Trachypithecus pileatus) that later speciated into the morphologically distinct T. geei. Trachypithecus, the genus to which both capped and golden langurs belong, spread north from a paleorefuge in south China, and Semnopithecus (gray langurs) spread east and northward from a refuge in south India. We show that the 2 genera both arrived in Bhutan and were separated from each other by the Sunkosh River and Black Mountains. Likewise, a population of capped langurs isolated from parental populations by rivers speciated into the distinct golden langurs. We conducted field surveys covering the entire range of langurs in Bhutan. The Sunkosh River and Black Mountain range in west Bhutan isolate gray langurs and golden langurs from each other. In the east, the Manas River system (Manas-Mangde) served as a barrier between golden and capped langurs. However, it is an imperfect barrier and a contact zone between the 2 species occurred on the banks of the Mangde River. Second, we reconstructed the evolutionary history of the langurs of Bhutan via molecular phylogenetic tools. We sequenced the cytochrome b region (cyt b) of the mitochondrial DNA (mtDNA) to model a phylogeny. It revealed the distinct evolutionary paths of the golden, capped, and gray langurs. As predicted, golden and capped langurs are closely related to each other and to other species in Trachypithecus from Southeast Asia. The gray langur of Bhutan grouped into a distinct clade with conspecifics in Semnopithecus from India and Nepal. The south Indian clade of gray langurs is more ancient, with the Bhutan and Nepal gray langurs having diverged later, which fits with the glacial models of ice sheet retreats and colonization of South Asia by gray langurs from south India north toward the Himalayas. Likewise, the golden and capped langur clade are the most derived and divergent from the older groups of Trachypithecus in Southeast Asia, which also fits with paleorefuge models of recolonization by Trachypithecus into the rest of Southeast Asia and north toward the Himalayas from paleorefuges in Southeast Asia. As predicted, golden and capped langurs are closely related to each other and gray langurs are only distantly related to them. The divergence between capped and golden langurs is more recent, while the split between Trachypithecus and Semnopithecus is more ancient and took place before the Pliocene.  相似文献   

6.
The Astilbe Buch.-Ham. ex D. Don was founded in 1912. There are now 18 species throughout the world. USSR, Thailand, Indonesia, Bhutan, Nepal d Kashanmir each has only 1 species; Korea, Philippines and USA each has 2; India 3; Japan 6; and China 7 (including 3 endemics and 1 new variety). And northeast China, north China and northwest China each has 2; central China and southwest China each 4; eastern China 5. Thus the distribution centre of this genus seems to be in the region covering Japan and eastern, central, and southwest China. This genus is divided into two sections: Sect. Simplicifoliae Engl. and Sect. Astilbe. Sect. Simplicifoliae may be considered as the primitive one because it has 5 ordinary petals. This section consists of about 10 species: 5 in China (east China 4; southwest China 3; central China, north China and northeast China each 2; Northwest China 1), 5 in Japan, 2 in Korea, 1 in Philippines and India each. According to the distribution of this section, the author suggests that the centre of origin of this genus be in the forested parts from Japonthrough east China to southwest China.  相似文献   

7.
This broad overview highlights the Indian subcontinent as an important and exciting source of new discoveries regarding Lower Paleolithic hominins and their biological and behavioral evolution. Broadly situated in the center of the Old World, the region arbitrarily encompasses Pakistan, India, Nepal, Sri Lanka, Bangladesh, and Bhutan; it represents the richest easternmost domain of classic Acheulean bifaces in the Old World. 1 The region comprises diverse ecological zones with complex geological and climatic histories, including a bi‐annual monsoon prevalent since the Miocene, all of which had major impacts on faunal and floral distributions and associated hominin adaptations.  相似文献   

8.
9.
A status survey of Asian Elephants Elephas maximus was conducted in the 9 north-eastern states of India. The habitat is contiguous with that in Bhutan, Myanmar and Bangladesh. Although the estimated population of 11 000 elephants is higher than in other regions of the Indian Sub-continent, it is fragmented and a number of small inviable isolated populations have formed. About 35% of the population is partly protected, but protection is inadequate. More areas and migration routes need to be protected. Man–elephant conflict is serious in many areas. A comprehensive Action Plan with a more pragmatic protected-area network has been proposed.  相似文献   

10.
Information gaps on the distribution of data deficient and rare species such as four‐horned antelope (FHA) in Nepal may impair their conservation. We aimed to empirically predict the distribution of FHA in Nepal with the help of data from the Indian subcontinent. Additionally, we wanted to identify core areas and gaps within the reported range limits and to assess the degree of isolation of known Nepalese populations from the main distribution areas in India. The tropical part of the Indian subcontinent (65°–90° eastern longitude, 5°–30° northern latitude), that is, the areas south of the Himalayan Mountains. Using MaxEnt and accounting for sampling bias, we developed predictive distribution models from environmental and topographical variables, and known presence locations of the study species in India and Nepal. We address and discuss the use of target group vs. random background. The prediction map reveals a disjunct distribution of FHA with core areas in the tropical parts of central to southern–western India. At the scale of the Indian subcontinent, suitable FHA habitat area in Nepal was small. The Indo‐Gangetic Plain isolates Nepalese from the Indian FHA populations, but the distribution area extends further south than proposed by the current IUCN map. A low to intermediate temperature seasonality as well as low precipitation during the dry and warm season contributed most to the prediction of FHA distribution. The predicted distribution maps confirm other FHA range maps but also indicate that suitable areas exist south of the known range. Results further highlight that small populations in the Nepalese Terai Arc are isolated from the Indian core distribution and therefore might be under high extinction risk.  相似文献   

11.
The Dactylicapnos macrocapnos complex is revised, and D. platycarpa Lidén, D. odontocarpa Lidén and D. macrocapnos subsp. echinosperma Lidén are recognised as new taxa. The complex consists of a chain of 4 vicariant taxa from northwestern India (Garhwal) to western Bhutan (Thimphu). Dactylicapnos cordata Lidén (eastern Nepal, Darjeeling) is described and contrasted with its close relative, the geographically disjunct D. burmanica (western Yunnan, Burma).  相似文献   

12.

Background

Despite the availability of several studies to clarify taxonomic problems on the highly threatened yews of the Hindu Kush-Himalaya (HKH) and adjacent regions, the total number of species and their exact distribution ranges remains controversial. We explored the use of comprehensive sets of morphological, molecular and climatic data to clarify taxonomy and distributions of yews in this region.

Methodology/Principal Findings

A total of 743 samples from 46 populations of wild yew and 47 representative herbarium specimens were analyzed. Principle component analyses on 27 morphological characters and 15 bioclimatic variables plus altitude and maximum parsimony analysis on molecular ITS and trnL-F sequences indicated the existence of three distinct species occurring in different ecological (climatic) and altitudinal gradients along the HKH and adjacent regions Taxus contorta from eastern Afghanistan to the eastern end of Central Nepal, T. wallichiana from the western end of Central Nepal to Northwest China, and the first report of the South China low to mid-elevation species T. mairei in Nepal, Bhutan, Northeast India, Myanmar and South Vietnam.

Conclusion/Significance

The detailed sampling and combination of different data sets allowed us to identify three clearly delineated species and their precise distribution ranges in the HKH and adjacent regions, which showed no overlap or no distinct hybrid zone. This might be due to differences in the ecological (climatic) requirements of the species. The analyses further provided the selection of diagnostic morphological characters for the identification of yews occurring in the HKH and adjacent regions. Our work demonstrates that extensive sampling combined with the analysis of diverse data sets can reliably address the taxonomy of morphologically challenging plant taxa.  相似文献   

13.
South‐East Asia has an exceptionally high diversity of snakes, with more than 250 snake species currently recorded from Thailand. This diversity likely reflects the diverse range of geographical and climatic conditions under which they live, but the evolutionary history and population genetics of many snake species in South‐East Asia have been little investigated in comparison with morphological studies. Here, we investigated genetic variation in the monocled cobra, Naja kaouthia, Lesson, 1831, across its distribution range in Thailand using mitochondrial DNA (cytochrome b, control region) for ~100 individuals and the nuclear DNA gene (C‐mos) for a small subset. Using population genetic and phylogenetic methods, we show high levels of genetic variation between regional populations of this non‐spitting cobra, including the north‐eastern, north‐central and southern regions, in addition to a population on Pha‐ngan Island, 150 km offshore from the southern peninsula. Moreover, inclusion of the north‐eastern population renders N. kaouthia paraphyletic in relation to other regional Naja species. The north‐eastern population is therefore probably specifically distinct. Given that these cobras are otherwise undifferentiated based on colour and general appearance to the “typical” cobra type of this region, they would represent a cryptic species. As has been shown in other animal groups from Thailand, it is likely that the geographical characteristics and/or tectonic alteration of these regions have facilitated high levels of population divergence of N. kaouthia in this region. Our study highlights the need for dense sampling of snake populations to reveal their systematics, plan conservation and facilitate anti‐snake venom development.  相似文献   

14.
毛茛科的桐庐铁线莲(Clematis tongluensis)原知分布于尼泊尔、不丹、印度东北部和孟加拉,2019年夏天在中国西藏东南部被发现.桐庐铁线链与绣球腾(Clematis montana)在亲缘关系上接近,两者的区别在于桐庐铁线莲的萼片呈长圆形,顶端尾状渐尖和表面被毛,背面无毛.  相似文献   

15.
中国千斤拔属植物的初步研究   总被引:7,自引:0,他引:7  
韦裕宗   《广西植物》1991,11(3):193-207
本文叙述了千斤拔属名的拉丁学名的变换和研究情况,并研究该属植物国产种的分类、地理分布及其特点。进而对该属植物的习性和苞片、花序、花和叶等诸器官演化趋势作初步探讨,并对该属6个类群之间可能的演化关系、属的起源、分布中心和迁移路线等问题提出初设想。  相似文献   

16.
Stachyurus himalaicus ssp. purpureus Y. P. Zhu&Z. Y. Zhang,a new subspecies of Stachyuraceae from eastern Himalaya,is described. It differs from the typical subspecies,S. hi-malaicus ssp. himalaicus,by having purplish pink to dark purple flowers. The new subspecies oc-curs in Xizang(Tibet)of China,E Nepal,Sikkim,Bhutan,and NE India,usually growing in dense forests at an altitude between2200and3300m.  相似文献   

17.
在对南亚、东南亚及邻近地区胶蚧属昆虫分布资料归纳的基础上,结合近年实地调查资料,提出了胶蚧属昆虫的自然分布、扩散路线及地理起源。结果如下:胶蚧属昆虫主要分布在南亚、东南亚及邻近地区,主要包括中国、印度、巴基斯坦、孟加拉国、尼泊尔、不丹、缅甸、泰国、老挝、越南、马来西亚、印度尼西亚、菲律宾、澳大利亚等地。胶蚧属昆虫有2个分布区,即南亚分布区和东南亚分布区。国际流域恒河、印度河、布拉马普特拉河、萨尔温江-怒江、澜沧江-湄公河、元江-红河及它们的部分支流是胶蚧属昆虫扩散的通道。南亚扩散路线以印度为中心,分别向北、向西和向东3个方向扩散;东南亚扩散路线以马来西亚为中心,向北扩散。胶蚧属昆虫有2个地理起源,南亚范围以印度为中心,东南亚范围内以马来西亚为中心。胶蚧属昆虫的寄主植物是其分布扩散的先决条件,气候条件是限制分布扩散的关键因子。  相似文献   

18.
Red panda Ailurus fulgens, an endangered habitat specialist, inhabits a narrow distribution range in bamboo abundance forests along mountain slopes in the Himalaya and Hengduan Mountains. However, their habitat use may be different in places with different longitudinal environmental gradients, climatic regimes, and microclimate. This study aimed to determine the habitat variables affecting red panda distribution across different longitudinal gradients through a multivariate analysis. We studied habitat selection patterns along the longitudinal gradient in Nepal's Himalaya which is grouped into the eastern, central, and western complexes. We collected data on red panda presence and habitat variables (e.g., tree richness, canopy cover, bamboo abundance, water availability, tree diameter, tree height) by surveys along transects throughout the species’ potential range. We used a multimodal inference approach with a generalized linear model to test the relative importance of environmental variables. Although the study showed that bamboo abundance had a major influence, habitat selection was different across longitudinal zones. Both canopy cover and species richness were unimportant in eastern Nepal, but their influence increased progressively toward the west. Conversely, tree height showed a decreasing influence on habitat selection from Eastern to Western Nepal. Red panda's habitat selection revealed in this study corresponds to the uneven distribution of vegetation assemblages and the dry climatic gradient along the eastern‐western Himalayas which could be related to a need to conserve energy and thermoregulate. This study has further highlighted the need of importance of bamboo conservation and site‐specific conservation planning to ensure long‐term red panda conservation.  相似文献   

19.
Ophiocordyceps sinensis is one of the best known fungi in Traditional Chinese Medicine. Many efforts have been devoted to locating the production areas of this species resulting in various reports; however, its geographic distribution remains incompletely understood. Distribution of O. sinensis at the county level is clarified in this work based on both a literature search and fieldwork. More than 3600 publications related to O. sinensis were investigated, including scientific papers, books, and online information. Herbarium specimens of O. sinensis and field collections made by this research group during the years 2000-2010 were examined to verify the distribution sites. A total of 203 localities for O. sinensis have been found, of which 106 are considered as confirmed distribution sites, 65 as possible distribution sites, 29 as excluded distribution sites and three as suspicious distribution sites. The results show that O. sinensis is confined to the Tibetan Plateau and its surrounding regions, including Tibet, Gansu, Qinghai, Sichuan, and Yunnan provinces in China and in certain areas of the southern flank of the Himalayas, in the countries of Bhutan, India and Nepal, with 3,000 m as the lowest altitude for the distribution. The fungus is distributed from the southernmost site in Yulong Naxi Autonomous County in northwestern Yunnan Province to the northernmost site in the Qilian Mountains in Qilian County, Qinghai Province, and from the east edge of the Tibetan Plateau in Wudu County, Gansu Province to the westernmost site in Uttarakhand, India. The clarification of the geographic distribution of O. sinensis will lay the foundation for conservation and sustainable use of the species.  相似文献   

20.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号