首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
The activity on Aspergillus spp. growth and on ochratoxin A production of two novel chromene dimers (3) was evaluated. The results of the bioassays indicate that the chromene dimer 3a inhibited mycelia growth by approximately 50% (EC50) at 140.1 μmol L−1 for A. niger, 384.2 μmol L−1 for A. carbonarius, 69.1 μmol L−1 for A. alliaceus and 559.1 μmol L−1 for A. ochraceus. When applied at concentrations of 2 mmol L−1, 3a totally inhibited the growth of all Aspergillus spp. tested. Furthermore, ochratoxin A production by A. alliaceus was reduced by about 94% with a 200 μmol L−1 solution of this compound. A moderate inhibitory effect was observed for the analogous structure 3b on ochratoxin A production but not in mycelia growth. No inhibition was registered for compounds 2a and 2b, used as synthetic precursors of the dimeric species 3.  相似文献   

2.
A Phoma sp., known to produce the pharmaceutically active metabolites squalestatin 1 (S1) and squalestatin 2 (S2), was cultured on malt-extract/agar (MEA) over a range of water activities (a w, 0.995–0.90) and temperatures (10–35 °C) to investigate the influence on growth and metabolite production. Use of the ionic solute NaCl to adjust a w resulted in significantly lower (P < 0.01) squalestatin yields than when the Phoma sp. was grown on MEA amended with the non-ionic solute glycerol. Water activity and temperature and their interactions were highly significant factors (P < 0.001) affecting growth of the Phoma sp., with optimum conditions of 0.998–0.980 a w and 25 °C. Squalestatin production was similarly influenced by a w, temperature, time and their interactions (P < 0.001). S1 and S2 production occurred over a narrower a w and temperature range than growth, with a slightly lower optimum a w range of 0.995–0.980 a w. The optimum temperature for squalestatin production varied from 20 °C (S1) to 25 °C (S2) and yields of S2 were up to 1000 times lower than those of S1. The ratio of S1 and S2 produced by the Phoma sp. was influenced by a w and temperature, with highest values at 0.99–0.98 a w, and at 15 °C. Incubation times of 28 days gave highest yields of both S1 and S2. Up to 2000-fold increases in squalestatin yields were measured at optimum environmental conditions, compared to the unmodified MEA. This indicates the need to consider such factors in screening systems used to detect biologically active lead compounds produced by fungi. Received: 2 June 1997 / Received last revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

3.
An extensive survey of filamentous fungi isolated from wheat grown and consumed in Lebanon and their capacity to produce aflatoxin B1 (AFB1) and ochratoxin A (OTA) was conducted to assess fungi potential for producing these toxins in wheat. From the 468 samples of wheat kernel, collected at preharvest stage from different locations during 2008 and 2009 cultivation seasons, 3,260 fungi strains were isolated with 49.4% belonging to Penicillium spp. and 31.2% belonging to Aspergillus spp. Penicillium spp. was detected on wheat samples with a high amount of P. verrucosum (37.0%). Among the different Aspergillus spp. isolated, A. niger aggregate was predominant and constituted 37.3%. whereas the isolation rate of A. flavus and A. ochraceus was 32.2 and 25.6%, respectively. The ability to produce OTA and AFB1 by isolates belonging to Aspergillus spp. and Penicillium spp. was analyzed by high performance liquid chromatography with fluorescence detector (HPLC-FLD). It was found that 57.0% of Penicillium spp. and 80% of A. ochraceus isolates tested produced OTA, respectively, at maximum concentrations of 53 and 65 μg/g CYA. As for the aflatoxinogenic ability, 45.3% of A. flavus produced AFB1, with maximum concentration of 40 μg/g CYA. A total of 156 wheat samples were analyzed for the levels of OTA and AFB1 by HPLC-FLD. The results showed that 23.7% were contaminated with OTA, at a concentration higher than 3 μg/kg and 35.2% of these samples were contaminated with AFB1 at concentration higher than 2 μg/kg. The risks originating from toxin levels in wheat produced in Lebanon should be monitored to prevent their harmful effects on public health.  相似文献   

4.
The effects of temperature, water activity (aw), incubation time, and their combinations on radial growth and ochratoxin A (OTA) production of/by eight Aspergillus niger aggregate strains (six A. tubingensis and two A. niger) and four A. carbonarius isolated from Moroccan grapes were studied. Optimal conditions for the growth of most studied strains were shown to be at 25°C and 0.95 aw. No growth was observed at 10°C regardless of the water activity and isolates. The optimal temperature for OTA production was in the range of 25°C∼30°C for A. carbonarius and 30°C∼37°C for A. niger aggregate. The optimal aw for toxin production was 0.95∼0.99 for A. carbonarius and 0.90∼0.95 for A. niger aggregate. Mean OTA concentration produced by all the isolates of A. niger aggregate tested at all sampling times shows that maximum amount of OTA (0.24 μg/g) was produced at 37°C and 0.90 aw. However, for A. carbonarius, mean maximum amounts of OTA (0.22 μg/g) were observed at 25°C and 0.99 aw. Analysis of variance showed that the effects of all single factors (aw, isolate, temperature and incubation time) and their interactions on growth and OTA production were highly significant.  相似文献   

5.
The objectives were to determine the influence of water activity (aw, 0.997–0.92) and temperature (10–37°C) and their interactions on conidial germination, mycelial growth and sporulation of two strains of Stachybotrys chartarum in vitro on a potato dextrose medium. Studies were carried out by modifying the medium with glycerol and either spread plating with conidia to evaluate germination and germ tube extension or centrally inoculating treatment media for measuring mycelial growth rates and harvesting whole colonies for determining sporulation. Overall, germination of conidia was significantly influenced by aw and temperature and was fastest at 0.997–0.98 aw between 15 and 30°C with complete germination within 24 h. Germ tube extension was found to be most rapid at similar aw levels and 25–30°C. Mycelial growth rates of both strains were optimal at 0.997 aw between 25 and 30°C, with very little growth at 37°C. Sporulation was optimum at 30°C at 0.997 aw. However, under drier conditions, this was optimum at 25°C. This shows that there are differences in the ranges of aw x temperature for germination and growth and for sporulation. This may help in understanding the role of this fungal species in damp buildings and conditions under which immune-compromised patients may be at risk when exposed to such contaminants in the indoor air environment.  相似文献   

6.
The species Trichoderma harzianum was analyzed as possible biocontrol agent of Alternaria alternata under different environmental conditions (water activity and temperature). The strains were analyzed macroscopically to obtain the Index of Dominance. The analysis was completed using two microscopic techniques. T. harzianum showed dominance on contact over A. alternata at all testing temperatures and water activities tested except at 0.95 a w and 15 °C, at which T. harzianum inhibited A. alternata at a distance. Biocontrol was governed by different mechanisms such as competition for space and nutrients, mycoparasitism, and possible antibiosis. Temperature and water activity significantly influenced fungal growth rate.  相似文献   

7.
The aim of this work was to evaluate the potential use of qualitative volatile patterns produced by Penicillium nordicum to discriminate between ochratoxin A (OTA) producers and non-producer strains on a ham-based medium. Experiments were carried out on a 3% ham medium at two water activities (aw ; 0.995, 0.95) inoculated with P. nordicum spores and incubated at 25°C for up to 14 days. Growing colonies were sampled after 1, 2, 3, 7 and 14 days, placed in 30-ml vials, sealed and the head space analysed using a hybrid sensor electronic nose device. The effect of environmental conditions on growth and OTA production was evaluated based on the qualitative response. However, after 7 days, it was possible to discriminate between strains grown at 0.995 aw, and after 14 days, the OTA producer and non-producer strain and the controls could be discriminated at both aw levels. This study suggests that volatile patterns produced by P. nordicum strains may differ and be used to predict the presence of toxigenic contaminants in ham. This approach could be utilised in ham production as part of a quality assurance system for preventing OTA contamination.  相似文献   

8.
Book reviews     
Sesame seeds (Sesamum indicum L) from four different geographic locations in Sierra Leone were sampled for their mycoflora. Three toxigenic Aspergillus species: A. flavus Link ex Fries, A. ochraceus Wilhelm, and A. tamarii Kita were common to all samples. Penicillium citrinum Thom and two Fusarium sp. were found in samples from two localities. The mycotoxins aflatoxin B1 and G1, ochratoxin A and B, and citrinin were positively identified.  相似文献   

9.
Rhizopus microsporus var. microsporus and var. oligosporus are used in the manufacture of various Asian fermented foods (tempe, black oncom, sufu). In view of solid-substrate fermentation (SSF) control, mycelial growth of strains of both varieties was tested for sensitivity to fluctuations of temperature, water activity and interstitial gas composition. This was achieved by measuring radial growth as well as biomass dry weight of pre-germinated microcolonies on defined media. The optimum conditions were temperature 40 °C, a w 0.995 and a gas composition of air for the growth of both strains on a model medium. Whereas radial growth rates of var. microsporus and var. oligosporus were similar, biomass growth rates of var. oligosporus were higher than those of var. microsporus under optimum conditions. The temperature-dependent growth of Rhizopus spp. at a w > 0.98 could be described by the Ratkowsky Equation. Carbon dioxide (5–10% v/v) inhibited the growth of Rhizopus spp. at non-limiting levels of oxygen. The two strains were able to grow at low (0.5% v/v) oxygen levels, but the mycelial density was rather low. No interrelation of water activity and gas composition was observed, but at high water activity the fungi were more sensitive to changes of temperature. The implications for process control are discussed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
The influence of temperature (T) and water activity (a w) on the growth rate (μ) of seven moulds (Alternaria alternata, Aspergillus flavus, Cladosporium cladosporioides, Mucor racemosus, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma harzianum) was assessed in suboptimal conditions. Firstly, the dependence of fungal growth on temperature, at a w 0.99, was modelled through an approach described previously for bacteria. A dimensionless growth rate variable: μ dimα=μ/μ optα depended on the following normalised temperature: T dim=(TT min)/(T optT min) according to a power function: μ dimα=[T dim] α , where α was an exponent to be estimated. Secondly, the same approach was used to describe the influence of a w on fungal growth, at the respective optimum temperatures for each mould. Similarly, μ dimβ=μ/μ optβ depended on the following normalised water activity: a wdim=(a wa wmin)/(a wopta wmin) according to a power function: μ dimβ=[a wdim]β. Results show: (i) for each mould, the α-value is significantly less than the β-value, confirming that water activity has a greater influence than temperature on fungal development; (ii) the α-values and the β-values depend on the mould; (iii) the α-value is less than 1 for the mesophilic mould A. flavus, whereas the other moulds are characterised by higher α-values ranging from 1.10 to 1.54; (iv) the mesophilic A. flavus exhibits a low β-value, 1.50, compared to the hydrophilic T. harzianum, β=2.44, while β-values are within the range (1.71–2.37) for the other moulds. Journal of Industrial Microbiology & Biotechnology (2002) 28, 311–315 DOI: 10.1038/sj/jim/7000248 Received 27 June 2001/ Accepted in revised form 04 February 2002  相似文献   

11.
Thirty milled rice samples were collected from retailers in 4 provinces of Malaysia. These samples were evaluated for Aspergillus spp, infection by direct plating on malt extract salt agar (MESA). All Aspergillus holomorphs were isolated and identified using nucleotide sequences of ITS 1 and ITS 2 of rDNA. Five anamorphs (Aspergillus flavus, A. oryzae, A. tamarii, A. fumigatus and A. nigef) and 5 teleomorphs (Eurotium rubrum, E. amstelodami, E. chevalieri, E. cristatum and E. tonophilum) were identified. The PCR-sequencing based technique for sequences of ITS 1 and ITS 2 is a fast technique for identification of Aspergillus and Eurotium species, although it does not work flawlessly for differentiation of Eurotium species. All Aspergillus and Eurotium isolates were screened for their ability to produce aflatoxin and ochratoxin A (OTA) by HPLC and TLC techniques. Only A. flavus isolate UPM 89 was able to produce aflatoxins B1 and B2.  相似文献   

12.
This study examined six strains of Beauveria bassiana s.l. and Isaria farinosa, one strain of Isaria fumosorosea and five strains of Metarhizium anisopliae s.l. to identify the ability for (1) growth and (2) sporulation under interacting environmental factors of water activity (aw) and temperature stress. Growth on Sabouraud Dextrose Agar (SDA; water activity, aw = 0.995) or SDA modified with glycerol to 0.98, 0.96 and 0.94 aw was measured at four different temperatures (25, 30, 35 and 37°C). All M. anisopliae strains grew at 25–35°C and 0.995 aw while only two strains tolerated extreme water stress at 0.94 aw.Three strains of B. bassiana were able to grow at 25–37°C and 0.995 aw. Only one strain of I. farinosa was able to grow at 25–37°C and 0.995 aw. Aw and temperature interactions resulted in different strain-dependent responses, in terms of growth and sporulation. Only one strain of I. farinosa and three of M. anisopliae grew at 0.94 aw and none of the B. bassiana strains tolerated such water stress. At 0.96 and 0.94 aw and 35–37°C, sporulation by all the strains of the three species were significantly affected. Under elevated temperatures and drought stress, very few of these strains of entomopathogenic fungi are able to grow and sporulate. Indeed, the B. bassiana strains were unable to tolerate the extreme conditions examined. Resilience to such abiotic interactions is critical for selecting strains for formulations. Tolerance to water and temperature stress could be good criteria for selection of strains with secondary spread potential for use as part of an integrated pest management system where secondary cycling may be important, especially in sub-tropical and tropical environments.  相似文献   

13.
Freshly harvested soybean, rice and corn from farms and corn-based pelleted feeds were collected from ranches from the coastal and mountain regions in Ecuador during 1998, and assessed for fungal contamination. The most prevalent fungi on pelleted feed were Aspergillus flavus and Fusarium graminearum. The prevalent fungi recovered from soybean were F. verticillioides, F. semitectum, Aspergillus flavus and A. ochraceus. In rice, F. oxysporum was the most prevalent toxigenic fungal species recorded, followed by F. verticillioides and A. flavus. In corn, F. verticillioides was the most prevalent fungus isolated in both the coastal and mountain regions, with high isolation frequencies of A. flavus and A. parasiticus at the coast. Based on the toxigenic species recovered, ochratoxin A may pose a contamination risk for soybean. A higher probability of aflatoxin contamination of corn was found in the coastal samples compared to those of the mountain region, while a risk of fumonisin contamination of corn exists in both regions.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
Colonization of barley grain by Aspergillus flavus and formation of aflatoxin B1 in the presence of Penicillium verrucosum, Fusarium sporotrichioides, and Hyphopichia burtonii were studied over a three-week period in all combinations of 20 or 30 °C and 0.97, 0.95 or 0.90 aw. Grain colonization was assessed initially by observing hyphal extension on the grain surface, using scanning electron microscopy, and then from the proportion of seeds infected and numbers of colony forming units (cfu) formed. Aflatoxin b1 concentrations were determined by enzyme linked immunosorbent assay using a monoclonal antibody. These studies showed that interaction between A. flavus and other fungi in paired culture had different effects on both colonization and aflatoxin formation depending on the species involved and environmental conditions. Germination of A. flavus spores was unaffected by the presence of other species on the grain surface. Subsequently, three principal patterns of A. flavus colonization of barley grain were observed through the incubation period in the presence of other fungal species: (a) colonization unaffected by the presence of other species; (b) colonization initially slower in the presence of other species but later differing little from pure cultures; and (c) colonization adversely affected by the presence of other species. Five main patterns of aflatoxin B1 production were observed relative to pure culture but with no consistent relationship with species, aw, temperature or incubation period; (a) little changed; (b) increased slowly; (c) decreased; (d) enhanced; and (e, f) increased initially but later decreased to (e) the same level as in pure culture or (f) to less than in pure culture. Generally, production of aflatoxin B1 by A. flavus was less than in pure culture but sometimes was changed only slightly by the presence of P. verrucosum, F. sporotrichioides or H. burtonii or was temporarily enhanced.  相似文献   

15.
The combined effects of water activity (aw) and temperature on mycotoxin production by Penicilium commune (cyclopiazonic acid — CPA) and Aspergillus flavus (CPA and aflatoxins — AF) were studied on maize over a 14-day period using a statistical experimental design. Analysis of variance showed a highly significant interaction (P 0.001) between these factors and mycotoxin production. The minimum aw/temperature for CPA production (2264 ng g–1 P. commune, 709 ng g–1 A. flavus) was 0.90 aw/30 °C while greatest production (7678 ng g–1 P. commune, 1876 ng g–1 A. flavus) was produced at 0.98 aw/20 °C. Least AF (411 ng g–1) was produced at 0.90 aw/20 °C and most (3096 ng g–1) at 0.98 aw/30 °C.  相似文献   

16.
During an investigation of the mycoflora on oilseed rape, the predominant fungal species present in 20 samples collected from Catalonia (Spain) wereAlternaria alternata (Fries) Keissler,Penicillium spp. andAspergillus flavus. None of the 20 samples analyzed presented contamination byAlternaria mycotoxins (tenuazonic acid, alternariol, alternariol methyl ether, altertoxin I and altertoxin II). Only aflatoxin B1 was detected in 1 of the 20 samples analyzed, with a concentration of 0.25 ppb. Of the 40Aspergillus flavus strains isolated from oilseed rape samples, only 3 revealed aflatoxigenic capacity. None of thePenicillium spp. isolated from oilseed rape samples revealed mycotoxigenic capacity (citreoviridin, griseofulvin, citrinin, patulin and penicillic acid).  相似文献   

17.
Potentially ochratoxigenic Aspergillus and Penicillium species were identified and the natural occurrence of ochratoxin A (OTA) in corn kernels was evaluated. Likewise, the capacity to produce OTA by Aspergillus section Nigri and Circumdati was investigated. A total of 50 corn samples for human consumption was collected in the south of Córdoba Province. The surface-disinfected method for mycobiota determination was used. The OTA detection was performed by HPLC. OTA production was tested in strains belonging to section Nigri and Circumdati. Statistical analysis demonstrated that the specie A. flavus was isolated in higher frequency (p<0.01) from corn kernels in DRBC and DG18 media. The percentage of corn kernels contaminated by A. niger var. niger was similar in DRBC and DG18 media. The frequency of grains contaminated by A. flavus and A. niger var. awamori was higher than A. niger var. niger and A. japonicus var. japonicus (p<0.01) in DG18 media. The other potentially ochratoxigenic species, A. ochraceus, was isolated between 5% and 10% of the corn kernels in DG18 and DRBC media, respectively. The OTA producing species P. verrucosum was not isolated. All samples of corn were OTA negative (<1 ng g−1). Thirty strains (25%) of the black Aspergillus were OTA producers. From four strains of A. ochraceus isolated, only one produced OTA. Due to the storage variable conditions could not be adequate in this substrate, the presence of ochratoxigenic strains of section Nigri and OTA needs to be evaluated for a longer time to establish the toxicological risk for human beings. The contamination of stored corn kernels with A. flavus and Aspergillus section Nigri was significant.  相似文献   

18.
Six actinomycetes were isolated from peanuts in Egypt. Of these, a Streptomyces strain (AS1) was found in in vitro assays to inhibit directly or via secondary metabolites both germination and growth of Aspergillus flavus. Tests of the AS1 cells for direct control of A. flavus populations or aflatoxin B1 (AFB1) production on stored peanuts was unsuccessful over 14-day storage periods. However, crude extracts of AS1 metabolites at 50 and 100 ppm completely inhibited spore germination of conidia of A. flavus in vitro over 48 h. Comparison of solvents for extracting the metabolites showed that the ethyl acetate extract was most effective. This gave greater than 85% inhibition of mycelial growth at these concentrations at different water availabilities (water activity; a w; 0.95, 0.92, and 0.89) and 25°C. Doses of 50, 200, and 500 ppm of AS1 metabolites significantly inhibited populations of A. flavus on stored peanuts at two water stress levels (0.90, 0.93 a w) at 25°C over 14-day storage periods. The amounts of AFB1 produced by A. flavus on peanuts stored at 0.90 a w were significantly decreased by AS1 metabolites for only 7 days. However, at 0.93 a w doses of 200 and 500 ppm significantly controlled AFB1 accumulation in peanuts for 14 days.  相似文献   

19.
The ability of fungi isolated from stored herbal drug plants to produce mycotoxins in semisynthetic media was studied. The results obtained show that aflatoxins and ochratoxin A, were produced by Aspergillus flavus, A. parasiticus and A. ochraceus isolates. The time-production courses of aflatoxins B1, B2, 1 and ochratoxin A in crude herbal drug preparations show that more of these toxins were produced with increase in time of storage of the drugs. The results indicate that the potential exists for the toxigenic strains to elaborate mycotoxins in a large quantity in herbal drug substrates than in semisynthetic media.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
Pascual  Susana  Melgarejo  Paloma  Magan  Naresh 《Mycopathologia》1999,146(2):83-89
Epicoccum nigrum conidia were produced by solid fermentation on wheat grains (cv. Rendeveaux and Brigadier) at different water activities (aw). Conidial production was highest at high aw(0.996) than at reduced aw (0.98). However, conidial production at reduced aw was improved when the aw of the substrate was adjusted with a mixture of glycerol and water. Maximum levels ofconidiation were 7–11 × 106 conidia g−1 grain. The aw of the solid substrate affected the pattern of accumulation of compatible solutes in the conidia. Mannitol was the main polyol in all conidialtypes. However, the amounts of mannitol were higher in conidia produced at high aw. At reduced aw the conidia of E. nigrum accumulated moreglycerol, which is more efficient in the osmorregulation proccess than mannitol. Arabitol accumulated in low amounts, specifically in conidia produced at the lower aw, on cv. Rendeveaux but not on cv. Brigadier. Trehalose was detected in higher amounts in cv. Rendeveaux than in cv. Brigadier, andthe amounts were higher in conidia produced at high aw. A significant amount of endogenous solutes was detected in the washing liquid used for the separation of the conidia. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号