首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aulakh  Milkha S.  Wassmann  Reiner  Bueno  C.  Rennenberg  Heinz 《Plant and Soil》2001,230(1):77-86
The impact of root exudates, collected from five rice cultivars, on methane (CH4) production was studied in a paddy soil under anaerobic conditions. Root exudates of the cultivars Dular, IR72 and IR65598 collected at four growth stages and of B40 and IR65600 collected at two growth stages showed that (a) CH4 production was commenced rapidly within 2 h upon exudate addition and reached a maximum within a day of addition, and (b) 7-d incubation periods were sufficient to study exudate-induced CH4 production potentials. Among different cultivars, high C releases from roots, increased the methanogenic source strength of the soil, which finally controlled CH4 production. The relationship of the amount of CH4 produced was stronger for the amount of total organic C (r = 0.920) than for the amount of organic acids (r = 0.868) added through exudates. Apparently, CH4 production and CH4 emission are more closely related to the release pattern of root exudate-C than to its individual components. The proportion of exudate-C converted to CH4 ranged between 61 and 83% and remained unaffected by cultivars and growth stages suggesting that the majority of exudate-C served as a methanogenic substrate in the anoxic rice soils. These observations indicate that the use of high-yielding cultivars with lowest excretion (for example IR65598, IR65600) would result in lowest exudate-induced CH4 production. Therefore, cultivar choice could greatly influence regional and global CH4 emissions and screening/selection of exiting rice cultivars, and/or breeding new cultivars with low exudation rates could offer an important methane mitigation option as long as yields are not compromised.  相似文献   

2.
A pot experiment was conducted to investigate CH4 emissions from a sandy paddy soil as influenced by rice cultivars and atmospheric CO2 elevation. The experiment with two CO2 levels, 370 μL L−1 (ambient) and 570 μL L−1 (elevated), was performed in a climatron, located at the National Institute for Agro‐Environmental Sciences, Tsukuba, Japan. Four rice cultivars were tested in this experiment, including IR65598, IR72, Dular and Koshihikari. Tiller number, root length and grain yield were clearly larger under elevated CO2 than under ambient CO2. IR72 and Dular showed significantly higher tiller number, root length and grain yield than Koshihikari and IR65598. Average daily CH4 fluxes under elevated CO2 were significantly larger by 10.9–23.8% than those under ambient CO2, and varied with the cultivars in the sequence Dular ≧ IR72>IR65598 ≧ Koshihikari. Dissolved organic C (DOC) content in the soil was obviously higher under elevated CO2 than under ambient CO2 and differed among the cultivars, in the sequence IR72>Dular>Koshihikari>IR65598. The differences in average daily CH4 fluxes between CO2 levels and among the cultivars were related to different root exudation as DOC content, root length and tiller number. This study indicated that Koshihikari should be a potential cultivar for mitigating CH4 emission and simultaneously keeping stable grain yield, because this cultivar emitted lowest CH4 emission and produced medium grain yield.  相似文献   

3.
Higher yields and lower methane emissions with new rice cultivars   总被引:7,自引:0,他引:7       下载免费PDF全文
Breeding high‐yielding rice cultivars through increasing biomass is a key strategy to meet rising global food demands. Yet, increasing rice growth can stimulate methane (CH4) emissions, exacerbating global climate change, as rice cultivation is a major source of this powerful greenhouse gas. Here, we show in a series of experiments that high‐yielding rice cultivars actually reduce CH4 emissions from typical paddy soils. Averaged across 33 rice cultivars, a biomass increase of 10% resulted in a 10.3% decrease in CH4 emissions in a soil with a high carbon (C) content. Compared to a low‐yielding cultivar, a high‐yielding cultivar significantly increased root porosity and the abundance of methane‐consuming microorganisms, suggesting that the larger and more porous root systems of high‐yielding cultivars facilitated CH4 oxidation by promoting O2 transport to soils. Our results were further supported by a meta‐analysis, showing that high‐yielding rice cultivars strongly decrease CH4 emissions from paddy soils with high organic C contents. Based on our results, increasing rice biomass by 10% could reduce annual CH4 emissions from Chinese rice agriculture by 7.1%. Our findings suggest that modern rice breeding strategies for high‐yielding cultivars can substantially mitigate paddy CH4 emission in China and other rice growing regions.  相似文献   

4.
A series of hydroponic experiments and an agar culture experiment were carried out to investigate aluminum (Al) accumulation and translocation in two rice (Oryza sativa L.) cultivars (Kasalath and Koshihikari) that differ in Al resistance. Al-resistance mechanisms, including Pi exudation under Al stress and pH shifts in the rhizosphere, were also studied. Al content in rice shoots was 41 mg kg−1 on average and did not differ between the two cultivars, which demonstrated that the rice cultivars were not Al accumulators. The majority of Al (95–97%) accumulated in roots. Al content in roots in the resistant cultivar (Koshihikari) was lower than that in the sensitive cultivar (Kasalath), which indicated that Al-exclusion mechanisms were mainly acting in rice. However, the rate of Pi exudation from the whole root or root tips was very low in both cultivars and was not significantly influenced by Al exposure, and thus seemed not to be the main Al-resistance mechanism. On the other hand, experiments with pH-buffered solution and color changes following culture in agar medium containing bromocresol purple revealed that the Al-induced pH increase could not explain the high Al resistance of rice. In addition, the Al content in shoots of Koshihikari was lower after the formation of iron plaque on the root surface, whereas that of Kasalath was not lower. These results suggested that rice roots cell wall components or root surfaces such as iron plaque, rather than pH changes and/or root exudates including organic acids and phosphate, play important roles in Al resistance in rice.  相似文献   

5.
赵宽  吴沿友  周葆华 《广西植物》2015,35(2):206-212
以诸葛菜和油菜为材料,水培环境下设置4个不同的缺锌和碳酸氢根离子胁迫处理,分别为+Zn0(含Zn且不加HCO3-的处理组),+Zn10(含Zn且加10 mmol·L-1HCO3-的处理组),-Zn0(缺Zn且不加HCO3-的处理组)和-Zn10(缺Zn且加10 mmol·L-1HCO3-的处理组),利用离子色谱法分析了4个处理的两种植物幼苗器官(根、茎、叶)及根系分泌物中的有机酸特征。结果表明:(1)高浓度碳酸氢根离子处理显著增加了两种植物器官及根系分泌的有机酸总量,尤其是在缺锌和高浓度碳酸氢根离子双重胁迫下(-Zn10处理),诸葛菜器官和根系分泌的有机酸比油菜更敏感,草酸、柠檬酸和苹果酸是诸葛菜器官和根系分泌物中的优势酸,这三种有机酸的含量分别占其有机酸总量的75%及以上;(2)叶片是两种植物有机酸产生的主要器官,有机酸的含量和分配比例从地上部分(叶和茎)到地下部分(根)减少;(3)两种植物器官和根系分泌物中的有机酸变化趋势一致,叶片中有机酸主要来源于暗呼吸过程和光呼吸过程,其他器官和根系分泌物中的有机酸主要来源于暗呼吸过程;(4)诸葛菜对缺锌和高浓度碳酸氢根离子的适应能力强于油菜,为诸葛菜的喀斯特适生性和低锌和高浓度碳酸氢根离子环境(如喀斯特环境)的生态修复提供了理论依据。  相似文献   

6.
The qualitative and quantitative composition of low-molecular exometabolites in roots of pea (Pisum sativum L.) was studied with a cultivar Triumph and its parental forms (a symbiotically effective variety k-8274 and a modern highly productive cv. Classic). A relationship between root exudation and the ability of cultivars to establish symbiosis was analyzed. In the early stages of plant growth, the roots of cv. Triumph exhibited low exudation of organic acids, sugars, and amino acids. The quantitative composition of organic acids in the root exudates of cv. Triumph was close to that of cv. k-8274, whereas the composition of sugars and amino acids was similar to that of cv. Classic. In the field experiment, the effect of inoculation with a mixture of rhizobium strains and mycorrhizal fungus on plant growth was more evident in cv. Triumph than in cvs. Classic and k-8274. The results suggest that the high symbiotic potential of cv. Triumph is related to exudation of pyruvic and succinic acids that were the major components of root exometabolites both in Triumph and k-8274 cultivars.  相似文献   

7.
Quantification of rhizodeposition (root exudates and root turnover) represents a major challenge for understanding the links between above‐ground assimilation and below‐ground anoxic decomposition of organic carbon in rice paddy ecosystems. Free‐air CO2 enrichment (FACE) fumigating depleted 13CO2 in rice paddy resulted in a smaller 13C/12C ratio in plant‐assimilated carbon, providing a unique measure by which we partitioned the sources of decomposed gases (CO2 and CH4) into current‐season photosynthates (new C) and soil organic matter (old C). In addition, we imposed a soil‐warming treatment nested within the CO2 treatments to assess whether the carbon source was sensitive to warming. Compared with the ambient CO2 treatment, the FACE treatment decreased the 13C/12C ratio not only in the rice‐plant carbon but also in the soil CO2 and CH4. The estimated new C contribution to dissolved CO2 was minor (ca. 20%) at the tillering stage, increased with rice growth and was about 50% from the panicle‐formation stage onwards. For CH4, the contribution of new C was greater than for heterotrophic CO2 production; ca. 40–60% of season‐total CH4 production originated from new C with a tendency toward even larger new C contribution with soil warming, presumably because enhanced root decay provided substrates for greater CH4 production. The results suggest a fast and close coupling between photosynthesis and anoxic decomposition in soil, and further indicate a positive feedback of global warming by enhanced CH4 emission through greater rhizodeposition.  相似文献   

8.
Rice cultivation is an important anthropogenic source of atmospheric methane (CH4), the emission of which is affected by management practices. Many field measurements have been conducted in major rice‐producing countries in Asia. We compiled a database of CH4 emissions from rice fields in Asia from peer‐reviewed journals. We developed a statistical model to relate CH4 flux in the rice‐growing season to soil properties, water regime in the rice‐growing season, water status in the previous season, organic amendment and climate. The statistical results showed that all these variables significantly affected CH4 flux, and explained 68% of the variability. Organic amendment and water regime in the rice‐growing season were the top two controlling variables; climate was the least critical variable. The average CH4 fluxes from rice fields with single and multiple drainages were 60% and 52% of that from continuously flooded rice fields. The flux from fields that were flooded in the previous season was 2.8 times that from fields previously drained for a long season and 1.9 times that from fields previously drained for a short season. In contrast to the previously reported optimum soil pH of around neutrality, soils with pH of 5.0–5.5 gave the maximum CH4 emission. The model results demonstrate that application of rice straw at 6 t ha?1 before rice transplanting can increase CH4 emission by 2.1 times; when applied in the previous season, however, it increases CH4 emission by only 0.8 times. Default emission factors and scaling factors for different water regimes and organic amendments derived from this work can be used to develop national or regional emission inventories.  相似文献   

9.

Aims

This study analyzed the extent to which root exudates diffuse from the root surface towards the soil depending on topsoil and subsoil properties and the effect of arbuscular mycorrhizal fungal hyphae on root-derived C distribution in the rhizosphere.

Methods

Alfalfa was grown in three-compartment pots. Nylon gauze prevented either roots alone or roots and arbuscular mycorrhizal fungal hyphae from penetrating into the rhizosphere compartments. 14CO2 pulse labeling enabled the measurement of 14C-labeled exudates in dissolved (DOC) and total organic carbon (TOC) in the rhizosphere, distributed either by diffusion alone or by diffusion, root hair and hyphal transport.

Results

Root exudation and microbial decomposition of exudates was higher in the rhizosphere with topsoil compared to subsoil properties. Exudates extended over 28 mm (DOC) and 20 mm (TOC). Different soil properties and mycorrhization, likely caused by the low arbuscular mycorrhizal colonization of roots (13?±?4 % (topsoil properties) and 18?±?5 % (subsoil properties)), had no effect.

Conclusions

Higher microbial decomposition compensated for higher root exudation into the rhizosphere with topsoil properties, which resulted in equal exudate extent when compared to the rhizosphere with subsoil properties. Higher 14C activity used for labeling compared with previous studies enabled the detection of low exudate concentrations at longer distances from the root surface.  相似文献   

10.
A comprehensive biogeochemistry model, DNDC, was revised to simulate crop growth and soil processes more explicitly and improve its ability to estimate methane (CH4) emission from rice paddy fields under a wide range of climatic and agronomic conditions. The revised model simulates rice growth by tracking photosynthesis, respiration, C allocation, tillering, and release of organic C and O2 from roots. For anaerobic soil processes, it quantifies the production of electron donors [H2 and dissolved organic carbon (DOC)] by decomposition and rice root exudation, and simulates CH4 production and other reductive reactions based on the availability of electron donors and acceptors (NO3?, Mn4+, Fe3+, and SO42?). Methane emission through rice is simulated by a diffusion routine based on the conductance of tillers and the CH4 concentration in soil water. The revised DNDC was tested against observations at three rice paddy sites in Japan and China with varying rice residue management and fertilization, and produced estimates consistent with observations for the variation in CH4 emission as a function of residue management. It also successfully predicted the negative effect of (NH4)2SO4 on CH4 emission, which the current model missed. Predicted CH4 emission was highly sensitive to the content of reducible soil Fe3+, which is the dominant electron acceptor in anaerobic soils. The revised DNDC generally gave acceptable predictions of seasonal CH4 emission, but not of daily CH4 fluxes, suggesting the model's immaturity in describing soil heterogeneity or rice cultivar‐specific characteristics of CH4 transport. It also overestimated CH4 emission at one site in a year with low temperatures, suggesting uncertainty in root biomass estimates due to the model's failure to consider the temperature dependence of leaf area development. Nevertheless, the revised DNDC explicitly reflects the effects of soil electron donors and acceptors, and can be used to quantitatively estimate CH4 emissions from rice fields under a range of conditions.  相似文献   

11.
Bicarbonate has been regarded as a major factor for inducing Zn deficiency in lowland rice, but the mechanisms responsible for this effect are not yet fully understood. The objective of the present study was to test whether early effects of bicarbonate (HCO3 )are inhibition of root growth due to the accumulation of organic acids induced by HCO3 . Solution culture experiments were conducted using two rice cultivars differing in susceptibility to Zn deficiency, and four bicarbonate concentrations (0, 5, 10, 20 mM). Bicarbonate (5–20 mM) strongly inhibited root growth of the Zn-inefficient cultivar within 4 days of treatments. In contrast, root growth of the Zn-efficient cultivar was slightly stimulated with bicarbonate at 5–10 mM and not affected at 20 mM. The inhibitory effect of bicarbonate on root growth in the Zn-inefficient cultivar was mainly that of impairment of new root initiation rather than suppression of elongation of individual roots. Bicarbonate (5–20 mM) increased the concentrations of malate, succinate and citrate in the roots of both cultivars, but to a greater extent for the Zn-inefficient than for the Zn-efficient cultivars. The results suggest that the impairment of root growth was likely to be the initial action of bicarbonate in inducing Zn deficiency in lowland rice, and the inhibitory effect of bicarbonate on root growth of the Zn-inefficient cultivar might result from high accumulation and an insufficient compartmentation of organic acids in the root cells.  相似文献   

12.
Influence of rice cultivar on methane emission from paddy fields   总被引:4,自引:0,他引:4  
Influence of rice cultivars on CH4 emissions from a paddy field was studied using four Japonica types, two Indica types, and two Japonica/Indica F1 hybrids. In addition, the suppression of CH4 emission by interrupting irrigation at the flowering stage was investigated. Patterns of seasonal variation in CH4 emission rates were similar among the eight cultivars. Two of the Japonica types showed the maximum and minimum CH4 emissions among the cultivars investigated. Neither the number of tillers, shoot length, shoot weight, and root weight correlated with the CH4 emission rates at the tillering and reproductive growth stages. Following temporary interruption of irrigation at the flowering stage, CH4 emission rates decreased drastically and remained at very low levels until the harvesting stage, indicating its great effectiveness for the suppression of CH4 emission from rice paddies.  相似文献   

13.
Methane (CH4) is a particularly potent greenhouse gas with a radiative forcing 23 times that of CO2 on a per mass basis. Flooded rice paddies are a major source of CH4 emissions to the Earth's atmosphere. A free‐air CO2 enrichment (FACE) experiment was conducted to evaluate changes in crop productivity and the crop ecosystem under enriched CO2 conditions during three rice growth seasons from 1998 to 2000 in a rice paddy at Shizukuishi, Iwate, Japan. To understand the influence of elevated atmospheric CO2 concentrations on CH4 emission, we measured methane flux from FACE rice fields and rice fields with ambient levels of CO2 during the 1999 and 2000 growing seasons. Methane production and oxidation potentials of soil samples collected when the rice was at the tillering and flowering stages in 2000 were measured in the laboratory by the anaerobic incubation and alternative propylene substrates methods, respectively. The average tiller number and root dry biomass were clearly larger in the plots with elevated CO2 during all rice growth stages. No difference in methane oxidation potential between FACE and ambient treatments was found, but the methane production potential of soils during the flowering stage was significantly greater under FACE than under ambient conditions. When free‐air CO2 was enriched to 550 ppmv, the CH4 emissions from the rice paddy field increased significantly, by 38% in 1999 and 51% in 2000. The increased CH4 emissions were attributed to accelerated CH4 production potential as a result of more root exudates and root autolysis products and to increased plant‐mediated CH4 emissions because of the larger rice tiller numbers under FACE conditions.  相似文献   

14.
The release of low molecular weight (LMW) organic compounds (e.g. organic acids, amino acids, sugars, etc.) by living plant roots significantly contributes to the development of chemical, physical as well as microbial rhizosphere gradients. Suitable and accurate sampling procedures are crucial for enhancing our understanding of the dynamics of related rhizosphere processes. Here we compare common sampling techniques with a novel tool for root exudate collection that allows non-destructive and repetitive sampling from soil-grown roots. Root exudates from Zea mays L. were collected using the following techniques: (i) hydroponic growth and sampling, (ii) soil growth and hydroponic sampling and (iii) rhizoboxes fitted with a novel in situ root exudate collecting tool. Furthermore, rhizosphere soil solution for the analysis of exudates and microbial metabolites was sampled using micro-suction cups (iv). The effect of different sampling solutions (deionised water and 0.5 mM CaCl2) on organic acid and amino acid exudation patterns was also investigated. The novel exudate collecting tool was successfully tested for root exudate sampling. Results showed that particularly amino acid exudation rates were significantly affected by growth conditions and sampling procedures, while organic acid exudation patterns varied less across the different sampling setups. Despite qualitative and quantitative differences, exudation rates were in the same order of magnitude across the different sampling procedures. Soil solution concentrations obtained from micro-suction-cup sampling at defined distance to the root surface showed no distinct gradient, highlighting the importance of soil microorganisms in regulating the soil solution concentration of LMW C compounds either via microbial degradation or the release of microbial metabolites. The exudate collector offers new opportunities to assess root exudation rates and composition from soil-grown plants and thus enhances our knowledge of fundamental rhizosphere processes.  相似文献   

15.
Rice variety is one of the key factors regulating methane (CH4) production and emission from the paddy fields. However, the relationships between rice varieties and populations of microorganisms involved in CH4 dynamics are poorly understood. Here we investigated CH4 dynamics and the composition and abundance of CH4‐producing archaea and CH4‐oxidizing bacteria in a Chinese rice field soil planted with three types of rice. Hybrid rice produced 50–60% more of shoot biomass than Indica and Japonica cultivars. However, the emission rate of CH4 was similar to Japonica and lower than Indica. Furthermore, the dissolved CH4 concentration in the rhizosphere of hybrid rice was markedly lower than Indica and Japonica cultivars. The rhizosphere soil of hybrid rice showed a similar CH4 production potential but a higher CH4 oxidation potential compared with the conventional varieties. Terminal restriction fragment length polymorphism analysis of the archaeal 16S rRNA genes showed that the hydrogenotrophic methanogens dominated in the rhizosphere whereas acetoclastic methanogens mainly inhabited the bulk soil. The abundance of total archaea as determined by quantitative (real‐time) PCR increased in the later stage of rice growth. However, rice variety did not significantly influence the structure and abundance of methanogenic archaea. The analysis of pmoA gene fragments (encoding the α‐subunit of particulate methane monooxygenase) revealed that rice variety also did not influence the structure of methanotrophic proteobacteria, though variable effects of soil layer and sampling time were observed. However, the total copy number of pmoA genes in the rhizosphere of hybrid rice was approximately one order of magnitude greater than the two conventional cultivars. The results suggest that hybrid rice stimulates the growth of methanotrophs in the rice rhizosphere, and hence enhances CH4 oxidation which attenuates CH4 emissions from the paddy soil. Hybrid rice is becoming more and more popular in Asian countries. The present study demonstrated that planting of hybrid rice will not enhance CH4 emissions albeit a higher grain production than the conventional varieties.  相似文献   

16.
Gaume  Alain  Mächler  Felix  De León  Carlos  Narro  Luis  Frossard  Emmanuel 《Plant and Soil》2001,228(2):253-264
We investigated some mechanisms, which allow maize genotypes to adapt to soils which are low in available P. Dry matter production, root/shoot-ratio, root length and root exudation of organic acids and acid phosphatase were investigated in four maize genotypes grown under P-deficient and P-sufficient conditions in sterile hydroponic culture. A low-P tolerant, an acid-tolerant and a low-P susceptible genotype of maize were compared with a Swiss commercial cultivar. The study found increased root development and increased exudation of acid phosphatase under P-deficient conditions in all maize genotypes, except for the Swiss cultivar. Effects on root formation and acid phosphatase were greater for the low-P tolerant than for the low-P susceptible, and the acid soil tolerant genotypes. Organic acid contents in root tissues were increased under P deficiency and related to increased PEPC activity. However, the increase in contents was associated with an increase in exudation for the low-P tolerant genotype only. The low-P susceptible genotype was characterized by high organic acid content in roots and low organic acid exudation. The organic acids content in the phloem exudates of shoots was related to root exudation under different P supply, to the difference between lines in organic acids root content, but not to the low-P tolerance or susceptibility of maize genotypes.  相似文献   

17.
通过试验,研究了2种供K水平对籽粒苋(Amaranthus spp.)富K基因型和一般基因型根系分泌物含量变化的影响,以及在低K胁迫时3个生长期两类基因型主要根系分泌物含量的变化特点,模拟了籽粒苋根系分泌物对土壤矿物态钾的活化作用.结果表明,籽粒苋根系分泌物中可溶性糖、氨基酸和有机酸含量随供K水平的升高而降低,且富K基因型根系分泌物中3种物质的分泌量始终大于一般基因型;在正常供K条件下,两基因型根系分泌能力相近,但在低K处理时,前者显著高于后者,差异显著;在2种供K水平下,根系有机酸分泌量在3种分泌物中占绝对优势,分别是可溶性糖和氨基酸分泌量的几十倍和几百倍.籽粒苋生长到50 d时,一般基因型根系可溶性糖、氨基酸和有机酸的分泌量较40 d时迅速降低.富K基因型根系分泌物中可溶性糖、氨基酸和有机酸含量在3个生长时期均大于一般基因型,且随着生长时间的延长,两基因型间可溶性糖、氨基酸和有机酸含量的差异明显增大.两类基因型在3个生长时期均以分泌有机酸为主,其占总分泌量的93%以上.籽粒苋根系分泌物处理后的土壤速效钾含量均高于清水对照处理,富K基因型在低K胁迫时的根系分泌物对土壤K的活化作用明显大于一般基因型.  相似文献   

18.
Organic anion exudation by roots as a mechanism of aluminium (Al) resistance has been intensively studied lately. In the present study, we evaluated qualitative and quantitative aspects of root exudation of organic anions in maize genotypes of distinct sensitivity to Al in response to Al exposure. Maize seedlings were grown axenically in nutrient solution and root exudates were collected along the whole seminal root axis for a short period (4 h) using a divided-root-chamber technique. In root exudates collected from 10-mm long root apices, citrate accounted for 67% of the total organic anions found, followed by malate (29%), trans-aconitate (3%), fumarate (<1%), and cis-aconitate (1%). Rates of citrate exudation from root apices of two genotypes with differential resistance to Al were consistently higher in the Al resistant one, differing by a factor of 1.7 – 3.0 across a range of external Al concentrations. Furthermore, relative Al resistance of eight maize genotypes correlated significantly well with their citrate exudation rate measured at 40 M Al. Higher exudation rates were accompanied by a less inhibited root elongation. The exudation of citrate along the longitudinal axis of fully developed seminal roots showed a particular pattern: citrate was exuded mainly in the regions of root apices, either belonging to the main root or to the lateral roots in the most basal part of the main root. The involvement of citrate in a mechanism of Al resistance is evaluated in terms of protection of the root from the effects of excess Al on root elongation and on nutrient uptake along a root axis showing distinct sites of citrate exudation.  相似文献   

19.
Quantitative estimation of root exudation of maize plants   总被引:6,自引:0,他引:6  
Summary The rate of root exudation of maize plants was estimated by measuring the rate of denitrification in a hermetically sealed root system. While CO2 production measured in the rhizosphere results both from root respiration and microbial respiration N2O production during nitrate respiration is solely related to the amount of root exudates available for bacterial degradation. With 4 week old plants growing in quartz sand or soil root exudation amounted to 7% of the net photosynthates. Calculations revealed that about 25% of the organic matter flowing into the root system was excreted into the rhizosphere.  相似文献   

20.
Rising CO2 concentrations associated with drought stress is likely to influence not only aboveground growth, but also belowground plant processes. Little is known about root exudation being influenced by elements of climate change. Therefore, this study wanted to clarify whether barley root exudation responds to drought and CO2 enrichment and whether this reaction differs between an old and a recently released malting barley cultivar. Barley plants were grown in pots filled with sand in controlled climate chambers at ambient (380 ppm) or elevated (550 ppm) atmospheric [CO2] and a normal or reduced water supply. Root exudation patterns were examined at the stem elongation growth stage and when the inflorescences emerged. At both dates, root exudates were analyzed for different compounds such as total free amino acids, proline, potassium, and some phytohormones. Elevated [CO2] decreased the concentrations in root exudates of some compounds such as total free amino acids, proline, and abscisic acid. Moreover, reduced water supply increased proline, potassium, electric conductivity, and hormone concentrations. In general, the modern cultivar showed higher concentrations of proline and abscisic acid than the old one, but the cultivars responded differentially under elevated CO2. Plant developmental stage had also an impact on the root exudation patterns of barley. Generally, we observed significant effects of CO2 enrichment, watering levels, and, to a lesser extent, cultivar on root exudation. However, we did not find any mitigation of the adverse effects of drought by elevated CO2. Understanding the multitude of relationships within the rhizosphere is an important aspect that has to be taken into consideration in the context of crop performance and carbon balance under conditions of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号