首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
小鼠母源因子对早期胚胎发育的影响   总被引:3,自引:0,他引:3  
在脊椎动物中发育过程中,卵母细胞要经历MII期停滞、受精、早期胚胎发育的启动、胚胎基因组的转录激活、并指导完成个体的发育过程。同时,核移植过程中,分化的细胞核在去核的卵母细胞中能够重编程到胚胎早期的状态并能完成个体的发育过程。在这些发育过程中母源因子都发挥了极其的重要作用。在小鼠胚胎发育研究中发现,小鼠的基因组激活发生在2细胞期,这一时期标志着合子的发育由卵母细胞控制向胚胎控制的过渡,期间发生一系列复杂的生化过程。体外培养的小鼠的胚胎的发育阻断也易发生的2细胞时期。因此对卵母细胞及早期胚胎母源因子的研究,将有利于了解早期体外培养胚胎和克隆胚胎发育失败的原因,为提高体外培养和克隆胚胎发育的成功率提供理论的基础。  相似文献   

4.
5.
Actin is known to be synthesized both during oogenesis and in cleavage-stage embryos in mice. Cytoskeletal beta-actin appears to be the major component, followed by gamma-actin, but the synthesis of alpha-actin has also been inferred from protein electrophoretic patterns. We have studied the expression of cytoskeletal (beta- and gamma-) and sarcomeric (alpha-cardiac and alpha-skeletal) actin genes at the level of the individual mRNAs in blot hybridization experiments using isoform-specific RNA probes. The results show that there are about 2 x 10(4) beta-actin mRNA molecules in the fully grown oocyte; this number drops to about one-half in the egg and less than one-tenth in the late two-cell embryo but increases rapidly during cleavage to about 3 x 10(5) molecules in the late blastocyst. The amount of gamma-actin mRNA is similar to that of beta-actin in oocytes and eggs but only about 40% as much in late blastocysts, indicating a differential accumulation of these mRNAs during cleavage. The developmental pattern of beta- and gamma-actin mRNA provides a striking example of the transition from maternal to embryonic control that occurs at the two-cell stage and involves the elimination of most or all of the maternal actin mRNA. There was no detectable alpha-cardiac or alpha-skeletal mRNA (i.e., less than 1,000 molecules per embryo) at any stage from oocyte to late blastocyst, suggesting that the sarcomeric actin genes are silent during preimplantation development.  相似文献   

6.
JY Zhang  YF Diao  HR Kim  DI Jin 《PloS one》2012,7(7):e40433
X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature oocyte spindles and abundant in the nucleus at the germinal vesicle (GV) stage. However, in preimplantation embryos, XBP-1 was solely detected in the cytoplasm at the one-cell stage. The density of XBP-1 was higher in the nucleus than the cytoplasm at the two-cell, four-cell, eight-cell, morula, and blastocyst stages. Furthermore, RT-PCR analysis confirmed active XBP-1 mRNA splicing at all preimplantation embryo stages, except the one-cell stage. Tunicamycin (TM), an ER stress inducer used as a positive control, promoted an increase in the density of nuclear XBP-1 at the one-cell and two-cell stages. Similarly, culture medium supplemented with 25 mM sorbitol displayed a remarkable increase active XBP-1 expression in the nuclei of 1-cell and 2-cell embryos. Conversely, high concentrations of TM or sorbitol led to reduced nuclear XBP-1 density and significant ER stress-induced apoptosis. Tauroursodeoxycholic acid (TUDCA), a known inhibitor of ER stress, improved the rate of two-cell embryo development to blastocysts by attenuating the expression of active XBP-1 protein in the nucleus at the two-cell stage. Our data collectively suggest that endogenous XBP-1 plays a role in normal preimplantation embryonic development. Moreover, XBP-1 splicing is activated to generate a functional form in mouse preimplantation embryos during culture stress. TUDCA inhibits hyperosmolar-induced ER stress as well as ER stress-induced apoptosis during mouse preimplantation embryo development.  相似文献   

7.
8.
9.
10.
11.
Previous work has shown that more than 50% or about 50 pg of polyadenylated RNA found in the full-grown mouse oocyte is deadenylated or degraded during meiotic maturation. Here we show that rRNA declines by 60 pg during this period, accounting for most of the 80-pg decline in total RNA and indicating that a significant amount of mRNA is deadenylated but not degraded during maturation. Actin mRNA is deadenylated at about 7 hr of in vitro maturation, following the decline in its translation. The poly(A) tail on hypoxanthine phosphoribosyltransferase (HPRT) mRNA is elongated at 7 hr of maturation, preceding an increase in HPRT activity. Actin mRNA is partially degraded in the one-cell embryo and falls to near the limit of detection in the late two-cell stage, while HPRT mRNA shows no change in early two-cell embryos, but is deadenylated and declines greatly during the two-cell stage. In aging unfertilized eggs, most of these changes occur on a delayed schedule. The various species of alpha-tubulin mRNA are largely deadenylated and more than half are degraded during maturation. Taken together with other published results, we conclude that each mRNA has its own pattern of changes in the length of the poly(A) tail (correlated with translation) and degradation during the period of maternal control of protein synthesis, and, for those examined, the maternal mRNAs remaining in the early two-cell embryo are degraded to low levels by the late two-cell stage.  相似文献   

12.
13.
The mechanisms that mediate the establishment of totipotency during the egg-to-embryo transition in mammals remain poorly understood. However, it is clear that unique factors stored in the oocyte cytoplasm are crucial for orchestrating this complex cellular transition. The oocyte cytoplasmic lattices (CPLs) have long been predicted to function as a storage form for the maternal contribution of ribosomes to the early embryo. We recently demonstrated that the CPLs cannot be visualized in Padi6-/- oocytes and that Padi6-/- embryos arrest at the two-cell stage. Here, we present evidence further supporting the association of ribosomes with the CPLs by demonstrating that the sedimentation properties of the small ribosomal subunit protein, S6, are dramatically altered in Padi6-/- oocytes. We also show that the abundance and localization of ribosomal components is dramatically affected in Padi6-/- two-cell embryos and that de novo protein synthesis is also dysregulated in these embryos. Finally, we demonstrate that embryonic genome activation (EGA) is defective in Padi6-/- two-cell embryos. These results suggest that, in mammals, ribosomal components are stored in the oocyte CPLs and are required for protein translation during early development.  相似文献   

14.
15.
Although laboratory-reared species of the genus Peromyscus—including deer mice—are used as model animals in a wide range of research, routine manipulation of Peromyscus embryogenesis and reproduction has been lagging. The objective of the present study was to optimize conditions for oocyte and/or embryo retrieval and for in vitro culturing. On average, 6.4 oocytes per mouse were recovered when two doses of 15 IU of pregnant mare serum gonadotropin (PMSG) were given 24 h apart, followed by 15 IU of hCG 48 h later. Following this hormone priming, females mated overnight with a fertile male yielded an average of 9.1 two-cell stage embryos. Although two-cell stage embryos developed to 8-cell stage in Potassium Simplex Optimized Medium (KSOM; Millipore-Chemicon, Billerica, MA, USA) in vitro, but not further, embryos recovered at the 8- to 16-cell stages developed into fully expanded blastocysts when cultured in M16 media in vitro. These blastocysts had full potential to develop into late stage fetuses and possibly into live pups. As a result of the present work, all stages of Peromyscus preimplantation development are now obtainable in numbers sufficient for molecular or other analyses. These advances provide the opportunity for routine studies involving embryo transfer (e.g., chimeras, transgenics), and preservation of genetic lines by cryopreservation.  相似文献   

16.
17.
18.
U3 small nuclear ribonucleic acids (snRNA) and U3 small nuclear ribonucleoprotein (snRNP), which are thought to be responsible for ribosomal RNA processing, are quantitated and localized during oocyte maturation, fertilization, and early embryogenesis in the mouse. On the basis of Northern blot and nuclease protection experiments, it is estimated that there are about 5 x 10(4) U3 snRNA molecules in an ovulated oocyte and in a two-cell embryo. This number then increases roughly 50-fold to 2.7 x 10(6) molecules per embryo by the blastocyst stage. At all stages of development U3 snRNP antigens colocalize with nucleoli, as defined by differential interference contrast microscopy and an antibody to a nucleolar epitope. The synthesis and distribution of U3 snRNA and U3 snRNP follow a pattern independent from other major U snRNPs and snRNAs.  相似文献   

19.
The objective of this study was to examine the effects of different culture media used for maturation of bovine oocytes on in vitro embryo development following in vitro fertilization. Oocytes were aspirated from 2-5 mm follicles of ovaries collected at a local abattoir. The oocyte-cumulus complexes (OCCs) were cultured for 23-25 h in one of seven commercially available media supplemented with 6 mg/ml bovine serum albumin (BSA), 0.25 mM pyruvate, 10 micrograms/ml luteinizing hormone (LH), 0.5 microgram/ml follicle-stimulating hormone (FSH), and 1 microgram/ml estradiol. After maturation for 23-25 h, all eggs were subjected to the same in vitro fertilization protocol using modified TALP medium and subsequently cultured in the same serum-free embryo culture medium (HECM-1/BSA) for 8 days, after which embryo development was assessed. Five media (SFRE, MEM alpha, TCM199, MEM alpha/+, RPMI:MEM alpha) better supported normal oocyte maturation as determined by embryo development to the two-cell (76-82%), morula/blastocyst (25-32%), and blastocyst (12-19%) stages. Oocytes that were matured in Waymouth's medium MB 752/l or Ham's F-12 had a significantly reduced incidence of cleavage to the two-cell stage (52% and 37%, respectively), which was not attributed to failure of fertilization. Of the eggs that did cleave to the two-cell stage in these two media, 27% and 9% developed to morulae/blastocysts but only 6% and 3%, respectively, developed into blastocysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Spindlin has been suggested to play an important role during the transition from oocyte maturation to embryo development in mouse, but its homolog similar to the mouse Spindlin in molecular and expression characterization has not been identified up to now in other vertebrates. In this study, a full length of cDNA sequence is cloned and sequenced from the gibel carp (Carassius auratus gibelio). It contains 1240 nucleotides with an open reading frame of 771 nt encoding 257 amino acids. Based on its amino acid sequence alignment and comparison analysis with the known Spin family proteins, the newly cloned Spin is named Carassius auratus gibelio Spindlin (CagSpin). Its product could be detected from mature eggs to blastula embryos, but its content decreased from the two-cell stage, and could not be detected after the gastrula stage. It suggests that the CagSpin should be a maternal protein that is expressed during oocyte maturation, and plays a crucial role in early cleavage of embryogenesis. CagSpin is the first homolog similar to mouse spindlin identified in fish, and also in other vertebrates. GST pull-down assay reveals the first biochemical evidence for the association of CagSpin and beta-tubulin, the microtubule component. Therefore, CagSpin may play important functions by interacting with beta-tubulin and other spindle proteins during oocyte maturation and egg fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号