首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Saller E  Bienz M 《EMBO reports》2001,2(4):298-305
Brinker is a nuclear protein that antagonizes Dpp signalling in Drosophila. Its expression is negatively regulated by Dpp. Here, we show that Brinker represses Ultrabithorax (Ubx) in the embryonic midgut, a HOX gene that activates, and responds to, the localized expression of Dpp during endoderm induction. We find that the functional target for Brinker repression coincides with the Dpp response sequence in the Ubx midgut enhancer, namely a tandem of binding sites for the Dpp effector Mad. We show that Brinker efficiently competes with Mad in vitro, preventing the latter from binding to these sites. Brinker also competes with activated Mad in vivo, blocking the stimulation of the Ubx enhancer in response to simultaneous Dpp signalling. These results indicate how Brinker acts as a dominant repressor of Dpp target genes, and explain why Brinker is a potent antagonist of Dpp.  相似文献   

3.
The Drosophila melanogaster gene Anaplastic Lymphoma Kinase (Alk) regulates a signal transduction pathway required for founder cell specification within the visceral muscle of the developing embryonic midgut. During embryonic development, the midgut visceral muscle is lined by the endodermal cell layer. In this paper, we have investigated signalling between these two tissues. Here, we show that Alk function is required for decapentaplegic (Dpp) expression and subsequent signalling via the Mad pathway in the developing gut. We propose that not only does Alk signalling regulate founder cell specification and thus fusion in the developing visceral muscle, but that Alk also regulates Dpp signalling between the visceral muscle and the endoderm. This provides an elegant mechanism with which to temporally coordinate visceral muscle fusion and later events in midgut development.  相似文献   

4.
5.
We have identified and cloned a novel type of homeobox gene that is composed of two homeodomains and is expressed in the Drosophila endoderm. Mutant analysis reveals that its activity is required at the foregut/midgut boundary for the development of the proventriculus. This organ regulates food passage from the foregut into the midgut and forms by the infolding of ectoderm and endoderm-derived tissues. The endodermal outer wall structure of the proventriculus is collapsed in the mutants leading to a failure of the ectodermal part to invaginate and build a functional multilayered organ. Lack-of-function and gain-of-function experiments show that the expression of this homeobox gene in the proventriculus endoderm is induced in response to Wingless activity emanating from the ectoderm/endoderm boundary whereas its expression in the central midgut is controlled by Dpp and Wingless signalling emanating from the overlying visceral mesoderm.  相似文献   

6.
7.
The decapentaplegic (dpp) gene product, a member of the transforming growth factor-beta family, is required in Drosophila embryos for normal gastrulation and the establishment of dorsal-ventral polarity in the embryo. dpp is also expressed at specific positions in the visceral mesoderm along the developing midgut. We find that mutations that eliminate the visceral mesoderm expression of dpp lead to defects in midgut morphogenesis and alter the spatially localized expression of the homeotic genes Sex combs reduced (Scr), Ultrabithorax (Ubx), and Antennapedia (Antp) in the visceral mesoderm. The extracellular dpp protein migrates from the visceral mesoderm across the apposing endodermal cell layer in a region of the endoderm that expresses the homeotic gene labial (lab). Mesodermal expression of dpp is required for the expression of lab in these endodermal cells indicating that dpp mediates an inductive interaction between the two germ layers. We propose that extracellular dpp protein regulates gut morphogenesis, in part, by regulating homeotic gene expression in the visceral mesoderm and endoderm of the developing midgut.  相似文献   

8.
Induction across germ layers in Drosophila mediated by a genetic cascade   总被引:26,自引:0,他引:26  
K Immerglück  P A Lawrence  M Bienz 《Cell》1990,62(2):261-268
We report an induction process occurring between two germ layers in the Drosophila embryo that involves a cascade of five interacting genes. Two of these, Ultrabithorax and abdominal-A, encode nuclear homeobox proteins; each of them is expressed in one of two adjacent parasegments in the visceral mesoderm and directs expression in its parasegment of a separate target gene, decapentaplegic in parasegment 7 and wingless in parasegment 8. The activity of both target genes is required for normal expression of another homeotic gene, labial, in cells of the adhering midgut epithelium. Their products are putative extracellular proteins, which presumably act as signals between the two germ layers. Positional instruction of this kind may be needed since the endoderm, unlike the mesoderm, appears unsegmented at first as it originates from two primordia near the embryonic poles, outside the realm of segmentation genes.  相似文献   

9.
10.
EGF receptor signalling plays diverse inductive roles during development. To achieve this, its activity must be carefully regulated in a variety of ways to control the time, pattern, intensity and duration of signalling. We show that the cell surface protein Echinoid is required to moderate Egfr signalling during R8 photoreceptor selection by the proneural gene atonal during Drosophila eye development. In echinoid mutants, Egfr signalling is increased during R8 formation, and this causes isolated R8 cells to be replaced by groups of two or three cells. This mutant phenotype resembles the normal inductive function of Egfr in other developmental contexts, particularly during atonal-controlled neural recruitment of chordotonal sense organ precursors. We suggest that echinoid acts to prevent a similar inductive outcome of Egfr signalling during R8 selection.  相似文献   

11.
12.
An important question in neurobiology is how different cell fates are established along the dorsoventral (DV) axis of the central nervous system (CNS). Here we investigate the origins of DV patterning within the Drosophila CNS. The earliest sign of neural DV patterning is the expression of three homeobox genes in the neuroectoderm-ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh)-which are expressed in ventral, intermediate, and dorsal columns of neuroectoderm, respectively. Previous studies have shown that the Dorsal, Decapentaplegic (Dpp), and EGF receptor (Egfr) signaling pathways regulate embryonic DV patterning, as well as aspects of CNS patterning. Here we describe the earliest expression of each DV column gene (vnd, ind, and msh), the regulatory relationships between all three DV column genes, and the role of the Dorsal, Dpp, and Egfr signaling pathways in defining vnd, ind, and msh expression domains. We confirm that the vnd domain is established by Dorsal and maintained by Egfr, but unlike a previous report we show that vnd is not regulated by Dpp signaling. We show that ind expression requires both Dorsal and Egfr signaling for activation and positioning of its dorsal border, and that abnormally high Dpp can repress ind expression. Finally, we show that the msh domain is defined by repression: it occurs only where Dpp, Vnd, and Ind activity is low. We conclude that the initial diversification of cell fates along the DV axis of the CNS is coordinately established by Dorsal, Dpp, and Egfr signaling pathways. Understanding the mechanisms involved in patterning vnd, ind, and msh expression is important, because DV columnar homeobox gene expression in the neuroectoderm is an early, essential, and evolutionarily conserved step in generating neuronal diversity along the DV axis of the CNS.  相似文献   

13.
During Drosophila embryogenesis homeotic genes control the developmental diversification of body structures. The genes probably coordinate the expression of as yet unidentified target genes that carry out cell differentiation processes. At least four homeotic genes expressed in the visceral mesoderm are required for midgut morphogenesis. In addition, two growth factor homologs are expressed in specific regions of the visceral mesoderm surrounding the midgut epithelium. One of these, decapentaplegic (dpp), is a member of the transforming growth factor beta (TGF-beta) family; the other, wingless (wg), is a relative of the mammalian proto-oncogene int-1. Here we show that the spatially restricted expression of dpp in the visceral mesoderm is regulated by the homeotic genes Ubx and abd-A. Ubx is required for the expression of dpp while abd-A represses dpp. One consequence of dpp expression is the induction of labial (lab) in the underlying endoderm cells. In addition, abd-A function is required for the expression of wg in the visceral mesoderm posterior to the dpp-expressing cells. The two growth factor genes therefore are excellent candidates for target genes that are directly regulated by the homeotic genes.  相似文献   

14.
15.
16.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

17.
18.
A homeobox gene, defective proventriculus (dve), is expressed in various tissues including the ventral ectoderm and midgut. Here, we show the expression pattern of dve in the ventral ectoderm, in which dve expression is induced by Spitz, a ligand for Drosophila epidermal growth factor receptor (EGFR). In spitz mutants, dve expression is only lost in the ventral ectoderm and overexpression of Spitz induces ectopic dve activation in the ventral ectoderm. Dve expression in the middle midgut depends on Decapentaplegic (Dpp) signaling, while expression of a dominant-negative form of Drosophila EGFR (DER(DN)) also causes a marked decrease in dve expression in the middle midgut. Furthermore, heterozygous mutation of thick veins (tkv), a Dpp receptor, strongly enhances the effect of DER(DN). These results indicate that EGFR signaling is crucial for dve expression in the ventral ectoderm and is required in the middle midgut where it cooperates with Dpp signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号