首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract This review deals with a number of enzymes produced by various moderate, eubacterial halophiles. The effects of salts on both the production and activities of different enzymes from these organisms have been studied. It is shown that the nature of the anions, as well as the cations can influence the production of different enzymes. The nature of these effects varies for different enzymes, and is not, at present, predictable.  相似文献   

2.
Pectolytic enzymes play an important role in food processing industries and alcoholic beverage industries. These enzymes degrade pectin and reduce the viscosity of the solution so that it can be handled easily. These enzymes are mainly synthesized by plants and microorganisms. Aspergillus niger is used for industrial production of pectolytic enzymes. This fungus produces polygalacturonase, polymethylgalacturonase and pectinlyase. This review mainly concerns with the production of pectolytic enzymes using different carbon sources. It also deals with the effect of operating parameters such as temperature, aeration rate, agitation and type of fermentation on the production of these enzymes.  相似文献   

3.
In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.  相似文献   

4.
Fourteen strains of white-rot basidiomycetes belonging to eight species of two genera (Inonotus and Pholiota) were tested for their ability to maintain the production of laccase, peroxidase and manganese-dependent peroxidase (enzymes involved in lignin biodegradation) after a short-time preservation in liquid nitrogen with different cryoprotectives (glycerol, dimethyl sulfoxide). No negative effect of cryopreservation or the used cryoprotective on production of the ligninolytic enzymes was found in the fungi tested.  相似文献   

5.
The cellulase complex of Neurospora crassa: activity, stability and release   总被引:2,自引:0,他引:2  
The temperature and pH optima, and the temperature and pH stability, of crude and purified enzymes of the cellulase complex of the cellulolytic ascomycete fungus Neurospora crassa were investigated. The effects of some non-ionic surfactants and fatty acids on the production/release of enzymes of cellulase complex were also examined. For the different enzymes of the complex, activity maxima occurred between pH 4.0 and 7.0, with pH 5.0 being close to optimal for stability of all. Temperature optima for activity ranged between 45 and 65 degrees C, with the stability optimum between 45 and 50 degrees C. The presence of C18 fatty acids and surfactants resulted in increased production of both endoglucanase and exoglucanase in the medium. Oleic acid was the most effective fatty acid tested, and Tween 80 the most effective surfactant. Oleic acid had no detectable effect on production of beta-glucosidase, and Tween 80 actually reduced its production.  相似文献   

6.
1. The activities of the enzymes of the citric acid cycle, the glyoxylate by-pass and some other enzymes acting on the substrates of these cycles have been measured at the pH of the yeast cell during the aerobic growth of yeast on different carbon sources and in different growth media. 2. Sugars induced an anaerobic type of metabolism as measured by ethanol production. Glucose was much more effective in inducing the anaerobic pathways than was galactose. The production of ethanol by cells grown on pyruvate was very small. 3. Glucose was also a more effective repressor than was galactose of the citric acid-cycle enzymes but both were equally effective in repressing almost completely the enzymes of the glyoxylate by-pass. 4. Disappearance of the sugars from the growth medium resulted in an increase in the activities of the enzymes of the citric acid cycle and in the appearance of substantial activities of the enzymes of the glyoxylate cycle. By contrast, the activities of purely biosynthetic enzymes (glutamate-oxaloacetate transaminase, NADP(+)-linked glutamate dehydrogenase) and of pyruvate decarboxylase were decreased. 5. The 2-oxoglutarate-oxidase system was found to be the least active enzyme of the citric acid cycle. 6. The regulatory control at the levels of pyruvate and acetaldehyde and the control of the citric acid cycle are discussed.  相似文献   

7.
Different strains of the thermophilic ascomycetous fungus Thermoascus aurantiacus have been reported in the literature to produce high levels of a variety of industrial interest enzymes (i.e. amylases, cellulases, pectinases and xylanases), which have been shown to be remarkably stable over a wide range of temperatures and appear to have tremendous commercial potential. Most studies on enzyme production by T. aurantiacus are carried out in chemically defined liquid medium, under conditions suitable for induction of a particular enzyme. A few studies have investigated the production of some enzymes by T. aurantiacus by solid-state fermentation, using lignocellulosic materials. The present review focuses on the enzymes produced by T. aurantiacus, their main kinetic parameters, and the effect of different culture conditions on production and enzyme activity. It also provides a view of the possible applications of T. aurantiacus enzymes, considering that this thermophilic fungus could comprise a potential source of thermostable enzymes.  相似文献   

8.
Immobilization is a key technology for successful realization of enzyme‐based industrial processes, particularly for production of green and sustainable energy or chemicals from biomass‐derived catalytic conversion. Different methods to immobilize enzymes are critically reviewed. In principle, enzymes are immobilized via three major routes (i) binding to a support, (ii) encapsulation or entrapment, or (iii) cross‐linking (carrier free). As a result, immobilizing enzymes on certain supports can enhance storage and operational stability. In addition, recent breakthroughs in nano and hybrid technology have made various materials more affordable hosts for enzyme immobilization. This review discusses different approaches to improve enzyme stability in various materials such as nanoparticles, nanofibers, mesoporous materials, sol–gel silica, and alginate‐based microspheres. The advantages of stabilized enzyme systems are from its simple separation and ease recovery for reuse, while maintaining activity and selectivity. This review also considers the latest studies conducted on different enzymes immobilized on various support materials with immense potential for biosensor, antibiotic production, food industry, biodiesel production, and bioremediation, because stabilized enzyme systems are expected to be environmental friendly, inexpensive, and easy to use for enzyme‐based industrial applications.  相似文献   

9.
Lipoxygenases (LOXs) are iron- or manganese-containing oxidative enzymes found in plants, animals, bacteria and fungi. LOXs catalyze the oxidation of polyunsaturated fatty acids to the corresponding highly reactive hydroperoxides. Production of hydroperoxides by LOX can be exploited in different applications such as in bleaching of colored components, modification of lipids originating from different raw materials, production of lipid derived chemicals and production of aroma compounds. Most application research has been carried out using soybean LOX, but currently the use of microbial LOXs has also been reported. Development of LOX composition with high activity by heterologous expression in suitable production hosts would enable full exploitation of the potential of LOX derived reactions in different applications. Here, we review the biological role of LOXs, their heterologous production, as well as potential use in different applications. LOXs may fulfill an important role in the design of processes that are far more environmental friendly than currently used chemical reactions. Difficulties in screening for the optimal enzymes and producing LOX enzymes in sufficient amounts prevent large-scale application so far. With this review, we summarize current knowledge of LOX enzymes and the way in which they can be produced and applied.  相似文献   

10.
Mutant strains of Aspergillus sojae exhibited coordinate increases of acid proteinase, α-amylase, and cellulase and a decrease of pectin trans-eliminase accompanied with the hyperproduction of alkaline proteinase in wheat bran koji culture. The production of these enzymes in the wheat bran solid medium, liquid wheat bran-defatted soybean medium, and liquid glucose-peptone medium were surveyed. The analyses on the production patterns of these enzymes under the different cultural conditions suggest that mutation in these mutants producing elevated levels of the above enzymes is due to a more complex alteration than a single gene mutation.  相似文献   

11.
A purified culture of the fungal pathogenCurvularia lunata causing leaf blight of pearl millet was used for studies on the production of cell-wall-degrading enzymes. Czapek-Dox medium was found to be the best medium of the five different nutrient media used for the production of cellulase and growth of the fungus. Pectolytic enzymes could not be detected under different cultural conditions. Two-week incubation period, pH 6.0 and temperature 25°C were found to be the most favorable conditions for good growth and maximum production of cellulase by the fungus in present studies. The results are presented and discussed in the light of the earlier findings onC. lunata.  相似文献   

12.
Three strains of Cephalosporium acremonium with different potential of cephalosporin C production show differences in the levels of sulphur amino acid metabolic enzymes. The regulation of these enzymes is also different in the strains. In the superior producing strain two enzymes directly involved in cysteine synthesis are the least susceptible to repression by methionine. In this strain cystathionine metabolizing enzymes seem to favour cysteine synthesis. Antibiotic producing strains, in contrast to the non-producing strain, are highly sensitive to chromate.  相似文献   

13.
Today the importance of in silico experiment grows bigger than before by the advance of computing power. More detailed mathematical modeling handled by simulation can produce more reasonable and meaningful results. In this research, we suggest the metabolic network of Lactococcus lactis for aerobic condition. Using a mathematical model, we observed the effect of enzymes on lactate production using flux distribution analysis, metabolic control analysis, and in silico experiment by biochemical simulation software. Each analysis showed some different results because of their characteristics but some key enzymes for lactate production were found from them.  相似文献   

14.
The production of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum, grown on different carbon and nitrogen sources as well as different environmental conditions was investigated. Highest feruloyl esterase (225 mU/ml) and alpha-L-arabinofuranosidase (211 mU/ml) activities were obtained when P. brasilianum was grown on sugar beet pulp, whereas maximum xylanase (17 U/ml) activity was found during growth on oat spelt xylan. Yeast extract was the preferable nitrogen source for the production of all the three enzymes. Further optimization of the production of the crude enzyme mixture was examined by experimental design using a D-optimal quadratic model. Investigation of the microbial regulation of enzyme production showed that the presence of free ferulic acid further stimulated the production and pointing to that the fungal regulatory mechanism involved a coordinated production and secretion of feruloyl esterase, xylanase and alpha-L-arabinofuranosidase. Since agroindustrial by-products are a potential source of phenolic acids, crude enzyme mixtures of P. brasilianum were tested for their hydrolysis abilities against eight complex or model substrates. While total release of phenolic acids and pentoses was not observed, the synergistic enhancement of hydrolysis in the presence of feruloyl esterase was clearly demonstrated.  相似文献   

15.
The production of extracellular alpha-amylase and protease by protoplasts of Bacillus amyloliquefaciens has been achieved. The production of enzymically active protease was totally dependent on a high concentration of either Mg2+, Ca2+, or spermidine, but production of active alpha-amylase was not. This cation dependence of protease production was seen immediately upon addition of lysozyme to intact cells. The cations could prevent the inactivation of protease and alter the cytoplasmic membrane configuration of protoplasts. Production of active alpha-amylase and protease by protoplasts was totally inhibited by proteolytic enzymes such as trypsin, alpha-chymotrypsin, or the organism's purified extracellular protease. The evidence suggests that these degradative enzymes act specifically on the emerging polypeptide of the extracellular enzyme and that the polypeptide emerges in a conformation different from that of the native molecule.  相似文献   

16.
The production of different extracellular ligninolytic enzymes was studied in autochthonous fungal strains from Argentina isolated from litter derived from hydrocarbon-polluted sites and from basidiocarps frowing on wood in forests. The strains tested were cultivated in a carbon-limited medium with shaking. Laccase activity reached higher levels than aryl-alcohol oxidase and manganese-dependent peroxidase activities in liquid cultures from different fungi. No lignin peroxidase activity was found in any strain assayed. Some species are reported for the first time as producers of different ligninolytic enzymes.  相似文献   

17.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

18.
Tyrosinases are copper-containing dioxygen activating enzymes found in many species of bacteria and are usually associated with melanin production. These proteins have a strong preference for phenolic and diphenolic substrates and are somewhat limited in their reaction scope, always producing an activated quinone as product. Despite this fact they have potential in several biotechnological applications, including the production of novel mixed melanins, protein cross-linking, phenolic biosensors, production of l-DOPA, phenol and dye removal and biocatalysis. Although most studies have used Streptomyces sp. enzymes, there are several other examples of these proteins that are also of potential interest. For instance a solvent tolerant enzyme has been described, as well as an enzyme with both tyrosinase and laccase activities, enzymes with altered substrate preferences, an enzyme produced as an inactive zymogen as well as examples which do not require auxiliary proteins for copper insertion (unlike the Streptomyces sp. enzymes which do require such a protein). This article will summarise the reports on the biotechnological applications of bacterial tyrosinases as well as the current information available on the different types of this enzyme.  相似文献   

19.
The production of hydrolytic enzymes by embryo-less barley seeds in response to various gibberellins and abscisic acid was investigated. The data support the hypothesis that plant growth substances may affect the mechanisms of hydrolase production and secretion in cereal seeds in different ways and at different point.  相似文献   

20.
AIMS: To determine optimal exopolysaccharide (EPS) production conditions of the mesophilic lactic acid bacterium strain Lactobacillus sakei 0-1 and to detect possible links between EPS yields and the activity of relevant enzymes. METHODS AND RESULTS: Fermentation experiments at different temperatures using either glucose or lactose were carried out. EPS production took place during the exponential growth phase. Low temperatures, applying glucose as carbohydrate source, resulted in the best bacterial growth, the highest amounts of EPS and the highest specific EPS production. Activities of 10 important enzymes involved in the EPS biosynthesis and the energy formation of Lact. sakei 0-1 were measured. The obtained results revealed that there is a clear link for some enzymes with EPS biosynthesis. It was also demonstrated clearly that the presence of rhamnose in the EPS building blocks is due to high activities of the enzymes involved in the rhamnose synthetic branch. CONCLUSION: EPS production in Lact. sakei 0-1 is growth-associated and displays primary metabolite kinetics. Glucose as carbohydrate source and low temperatures enhance the EPS production. The enzymes involved in the biosynthesis of the activated sugar nucleotides play a major role in determining the monomeric composition of the synthesized EPS. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed results contribute to a better understanding of the physiological factors influencing EPS production and the key enzymes involved in EPS biosynthesis by Lact. sakei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号