首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin receptors: form and function and distribution   总被引:9,自引:0,他引:9  
The peptide hormone, angiotensin II, acts primarily via type I (AT(1)) and type II (AT(2)) angiotensin receptors. Proteolytic fragments of angiotensin II also have biological activity via these and other receptors, with actions that may mimic or antagonise angiotensin II. Most notably, a high affinity-binding site for angiotensin IV (the Val(3)-Phe(8) fragment of angiotensin II) has recently been identified as the insulin-regulated aminopeptidase (IRAP). While AT(1) and AT(2) receptors are seven transmembrane-spanning, G protein-coupled receptors with some well-established features of relevance to health and disease, the existence of separate receptor systems for angiotensin fragments offers exciting possibilities for new therapeutics to target the diverse actions of the angiotensin peptides.  相似文献   

2.
Dharmani M  Mustafa MR  Achike FI  Sim MK 《Peptides》2008,29(10):1773-1780
Angiotensin II is known to act primarily on the angiotensin AT(1) receptors to mediate its physiological and pathological actions. Des-aspartate-angiotensin I (DAA-I) is a bioactive angiotensin peptide and have been shown to have contrasting vascular actions to angiotensin II. Previous work in this laboratory has demonstrated an overwhelming vasodepressor modulation on angiotensin II-induced vasoconstriction by DAA-I. The present study investigated the involvement of the AT(1) receptor in the actions of DAA-I on angiotensin II-induced vascular actions in the renal vasculature of normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and streptozotocin (STZ)-induced diabetic rats. The findings revealed that the angiotensin receptor in rat kidney homogenate was mainly of the AT(1) subtype. The AT(1) receptor density was significantly higher in the kidney of the SHR. The increase in AT(1) receptor density was also confirmed by RT-PCR and Western blot analysis. In contrast, AT(1) receptor density was significantly reduced in the kidney of the streptozotocin-induced diabetic rat. Perfusion with 10(-9)M DAA-I reduced the AT(1) receptor density in the kidneys of WKY and SHR rats suggesting that the previously observed vasodepressor modulation of the nonapeptide could be due to down-regulation or internalization of AT(1) receptors. RT-PCR and Western blot analysis showed no significant changes in the content of AT(1) receptor mRNA and protein. This supports the suggestion that DAA-I causes internalization of AT(1) receptors. In the streptozotocin-induced diabetic rat, no significant changes in renal AT(1) receptor density and expression were seen when its kidneys were similarly perfused with DAA-I.  相似文献   

3.
Human adipose tissue expresses all the components necessary for the production of angiotensin peptides. Although local effects of angiotensin II on cells from adipose tissue are beginning to be recognised, the expression of angiotensin receptors on human preadipocytes and adipocytes is still controversial. This study addresses the issue by monitoring the mRNA levels as well as the protein production of angiotensin II receptors of type 1 and 2 (AT 1 and AT 2 ) during differentiation of primary human preadipocytes in culture and in mature adipocytes. mRNA levels of the two receptor types are inversely correlated during adipose conversion. AT 1 receptor mRNA is greatly diminished within 12 days after induction of differentiation, while AT 2 receptor mRNA is elevated. mRNA levels of mature adipocytes confirm this trend. The regulation is not seen as strongly on the protein level. The amount of AT 2 receptor protein is increased, correlating well with the rise in specific glycerol-3-phosphate dehydrogenase activity of the cells, but the AT 1 receptor protein does not vary during the whole differentiation period. As the functional role of AT 2 receptors in adipose tissue is not known to date, further studies have to show if the AT 1 -mediated inhibitory actions on adipose conversion are downregulated in differentiating cells through decreased AT 1 /AT 2 receptor ratio.  相似文献   

4.
Hypertension is a major risk factor for human morbidity and mortality through its effects on target organs like heart, brain and kidneys. More intensive treatment for the effective control of blood pressure significantly reduces the morbidity and mortality. The renin angiotensin system (RAS) is a coordinated hormonal cascade of major clinical importance in the regulation of blood pressure. The principal effector peptide of RAS is angiotensin II, which acts by binding to one of the two major angiotensin II receptors AT(1) and AT(2). Angiotensin II through AT(1) receptor mediates vast majority of biologically detrimental actions. Nonpeptidic angiotensin II (AT(1)) antagonists are the most specific means to block the renin angiotensin enzymatic cascade available presently. Majority of AT(1) antagonists are based on modifications of losartan structure, the first clinically used AT(1) antagonist. In this review, a comprehensive presentation of the literature on AT(1) receptor antagonists has been given.  相似文献   

5.
Identification of two subtypes in the rat type I angiotensin II receptor.   总被引:10,自引:0,他引:10  
N Iwai  T Inagami 《FEBS letters》1992,298(2-3):257-260
A rat adrenal cDNA library was screened by colony hybridization using a rat cDNA fragment of type I angiotensin II receptor (AT1A) previously isolated from the kidney. Two cDNA clones were identified, designated as AT1B, to have a nucleotide sequence highly homologous to and yet distinct from AT1A. The amino acid sequence of AT1B consists of 359 amino acid residues and has 96% identity with AT1A. No conspicuous difference in the ligand binding characteristics was observed between AT1A and AT1B. The mRNA for AT1B was expressed in many tissues as is the case with AT1A, and most abundantly expressed in the adrenal glands in the Sprague-Dawley rats. The existence of two subtypes in the rat type I angiotensin II receptor might explain the diverse actions of angiotensin II in various tissues.  相似文献   

6.
The renin-angiotensin system (RAS) plays an important role in regulating arterial pressure, blood volume, thirst, cardiac function, and cellular growth. Both a circulating and multiple tissue-localized systems have been identified, and are generally portrayed as a series of reactions that occur sequentially with a single outcome: angiotensinogen is cleaved by renin to form angiotensin I, which in turn is processed by angiotensin-converting enzyme (ACE) to angiotensin II, which then activates either the AT1 or the AT2 plasma membrane receptor. Evidence has emerged, however, showing that some RAS components play important roles outside of this canonical scheme. This article provides an overview of some recently identified extra-system functions. In addition to forming angiotensin II, ACE is a multifunctional enzyme equally important in the metabolism of vasodilator and antifibrotic peptides. As the membrane-bound form, ACE functions as a "receptor" that initiates intracellular signaling leading to gene expression. Both angiotensin I and II may lead to actions that are independent of, or even oppose, those of the RAS via their metabolism by the novel ACE-homologue ACE2. The two angiotensin II receptor types have ligand-independent roles that influence cellular signaling and growth, some of which may result from the ability to form hetero-dimers with other 7-transmembrane receptors. Finally, intracellular angiotensin II has been demonstrated to have actions on cell-communication, gene expression, and cellular growth, through both receptor-dependent and independent means. A greater understanding of these extra-system functions of the RAS components may aid in the development of novel treatments for hypertension, myocardial ischemia, and heart failure.  相似文献   

7.
Angiotensin II mediates is biological actions via different subtypes of G protein-coupled receptors, termed AT(1) and AT(2) receptors. In rodents, two AT(1) receptors have been identified, AT(1A) and AT(1B), whereas in humans a single AT(1) receptor exists. Recently, a number of transgenic animal models have been generated which overexpress or lack functional angiotensin II receptor subtypes. This review focuses on the physiological significance of angiotensin II receptor subtype diversity in the cardiovascular system. In the mouse, AT(1A) receptors are the major regulators of cardiovascular homeostasis by determining vascular tone and natriuresis. In addition, AT(1A) receptors mediate growth-stimulating signals in vascular and cardiac myocytes. AT(1B) receptors participate in blood pressure regulation, and their functions become apparent when the AT(1A) receptor gene is deleted. Deletion of the mouse gene for the AT(2) receptor subtype led to hypersensitivity to pressor and antinatriuretic effects of angiotensin II in vivo, suggesting that the AT(2) receptor subtype counteracts some of the biological effects of AT(1) receptor signalling.  相似文献   

8.
The renin-angiotensin-aldosterone system (RAAS) plays an important role in both the short-term and long-term regulation of arterial blood pressure, and fluid and electrolyte balance. The RAAS is a dual hormone system, serving as both a circulating and a local tissue hormone system (i.e., local mediator) as well as neurotransmitter or neuromediator functions in CNS. Control of blood pressure by the RAAS is exerted through multiple actions of angiotensin II, a small peptide which is a potent vasoconstrictor hormone implicated in the genesis and maintenance of hypertension. Hypertension is a primary risk factor associated with cardiovascular, cerebral and renal vascular disease. One of the approaches to the treatment of hypertension, which may be considered as a major scientific advancement, involves the use of drugs affecting the RAAS. Pharmacological interruption of the RAAS was initially employed in the late 1970s with the advent of the angiotensin converting enzyme (ACE) inhibitor, captopril. ACE inhibitors have since gained widespread use in the treatment of mild to moderate hypertension, congestive heart failure, myocardial infarction, and diabetic nephropathy. As the roles of the RAAS in the pathophysiology of several diseases was explored, so did the realization of the importance of inhibiting the actions of angiotensin II. Although ACE inhibitors are well tolerated, they are also involved in the activation of bradykinin, enkephalins, and other biologically active peptides. These actions result in adverse effects such as cough, increased bronchial reactivity, and angioedema. Thus, the goal of achieving a more specific blockade of the effects of angiotensin II than is possible with ACE inhibition. The introduction of the nonpeptide angiotensin II receptor antagonist losartan in 1995 marked the achievement of this objective and has opened new vistas in understanding and controlling the additional biological effects of angiotensin II. Complementary investigations into the cloning and sequencing of angiotensin II receptors have demonstrated the existence of a family of angiotensin II receptor subtypes. Two major types of angiotensin II receptors have been identified in humans. The type 1 receptor (AT1) mediates most known effects of angiotensin II. The type 2 receptor (AT2), for which no precise function was known in the past, has gained importance recently and new mechanisms of intracellular signalling have been proposed. This review presents recent advances in angiotensin II receptor pharmacology, molecular biology, and signal transduction, with particular reference to the AT1 receptor. Excellent reviews have appeared recently on this subject.  相似文献   

9.
10.
The influence of long-lasting blockade of angiotensin AT1 or AT2 receptors by antibody against the particular receptor peptides on blood pressure and relative heart and kidney weight was studied in spontaneously hypertensive rats (SHR). Young and adult SHR were repeatedly immunized against the sequence 14-23 of angiotensin AT1 receptor from the age of either 1 or 3 months. Other groups of young and adult SHR were immunized against the sequences 37-43 and 106-116 of angiotensin AT2 receptor. Synthetic peptides conjugated to bovine gamma globulin were used as antigens. After 5 months of immunization, blood pressure was measured by the direct method. All immunized animals produced antibodies against the particular peptides. At the end of immunization, the blood pressure was significantly decreased in SHR immunized in youth against angiotensin AT1 receptor peptide, although no difference in heart and kidney hypertrophy was observed compared to sham-immunized SHR. The immunization against angiotensin AT1 receptor peptide in adulthood as well as the immunization against angiotensin AT2 receptor peptides in youth or in adulthood affected neither blood pressure nor heart and kidney weight. No influence of immunization on the studied parameters was observed in normotensive WKY rats. Angiotensin AT1 receptors play a more important role in the pathogenesis of spontaneous hypertension than angiotensin AT2 receptors. The blockade of angiotensin AT1 receptors by active immunization against the receptor peptide attenuated hypertension development in young SHR but did not modify the already established hypertension in adult SHR.  相似文献   

11.
We present a comparative account on 3D-structures of human type-1 receptor (AT1) for angiotensin II (AngII), modeled using three different methodologies. AngII activates a wide spectrum of signaling responses via the AT1 receptor that mediates physiological control of blood pressure and diverse pathological actions in cardiovascular, renal, and other cell types. Availability of 3D-model of AT1 receptor would significantly enhance the development of new drugs for cardiovascular diseases. However, templates of AT1 receptor with low sequence similarity increase the complexity in straightforward homology modeling, and hence there is a need to evaluate different modeling methodologies in order to use the models for sensitive applications such as rational drug design. Three models were generated for AT1 receptor by, (1) homology modeling with bovine rhodopsin as template, (2) homology modeling with multiple templates and (3) threading using I-TASSER web server. Molecular dynamics (MD) simulation (15 ns) of models in explicit membrane-water system, Ramachandran plot analysis and molecular docking with antagonists led to the conclusion that multiple template-based homology modeling outweighs other methodologies for AT1 modeling.  相似文献   

12.
The angiotensin II AT2 receptor is an AT1 receptor antagonist   总被引:9,自引:0,他引:9  
The vasopressor angiotensin II activates AT(1) and AT(2) receptors. Most of the known in vivo effects of angiotensin II are mediated by AT(1) receptors while the biological functions of AT(2) receptors are less clear. We report here that the AT(2) receptor binds directly to the AT(1) receptor and thereby antagonizes the function of the AT(1) receptor. The AT(1)-specific antagonism of the AT(2) receptor was independent of AT(2) receptor activation and signaling, and it was effective on different cells and on human myometrial biopsies with AT(1)/AT(2) receptor expression. Thus, the AT(2) receptor is the first identified example of a G-protein-coupled receptor which acts as a receptor-specific antagonist.  相似文献   

13.
A rat vascular AT1 receptor cDNA has been stably expressed into Chinese Hamster Ovary cells and the resulting recombinant AT1a receptor has been functionally characterized. This receptor binds 125I Sar1-angiotensin II with an affinity of 0.9 nM and the displacement of this ligand by a series of peptidic and nonpeptidic analogs is shown. Binding of angiotensin II to this receptor causes a rapid increase in inositol phosphate production, whereas this effect is not observed in nontransfected cells. Des-aspartyl1 angiotensin II and at a lesser extent angiotensin I are also able to produce an increase in inositol phosphates. More importantly, the actions of angiotensin II on cell division were clearly demonstrated in this model, since angiotensin II is able to stimulate DNA synthesis by 400% and double the cell population of the transfected cells in 36 hours in the absence of any other growth factor, whereas no effect is observed in nontransfected cells.  相似文献   

14.
15.
Angiotensin II activates the Jak-STAT pathway via the AT(1) receptor. We studied two mutant AT(1) receptors, termed M5 and M6, that contain Y to F substitutions for the tyrosine residues naturally found in the third intracellular loop and the carboxyl terminus. After binding ligand, both the M5 and M6 AT(1) receptors trigger STAT1 tyrosine phosphorylation equivalent to that observed with the wild type receptor, indicating that angiotensin II-mediated phosphorylation of STAT1 is independent of these receptor tyrosine residues. In response to angiotensin II, Jak2 autophosphorylates on tyrosine, and Jak2 and STAT1 physically associate, a process that depends on the SH2 domain of STAT1 in vitro. Evaluation of the wild type, M5, and M6 AT(1) receptors showed that angiotensin II-dependent AT(1) receptor-Jak2-STAT1 complex formation is dependent on catalytically active Jak2, not on the receptor tyrosine residues in the third intracellular loop and carboxyl tail. Immunodepletion of Jak2 virtually eliminated the ligand-dependent binding of STAT1 to the AT(1) receptor. These data indicate that the association of STAT1 with the AT(1) receptor is not strictly bimolecular; it requires Jak2 as both a STAT1 kinase and as a molecular bridge linking STAT1 to the AT(1) receptor.  相似文献   

16.
17.
Angiotensin II (Ang II), a major regulator of cardiovascular function and body fluid homeostasis, mediates its biological actions via two subtypes of G protein-coupled receptors, termed AT(1) and AT(2). The primary goal of this study was to raise monoclonal anti-peptide antibodies specific to angiotensin AT(1)- and AT(2)-receptor subtypes and to Ang II itself and using these monoclonal antibodies to determine the intraadrenal localization of AT(1) and AT(2) receptors and Ang II in male adult rats. Immunocytochemistry unambiguously demonstrates a regional colocalization of Ang II and angiotensin II receptors in the adrenal gland. The novel antibodies localized Ang II and the AT(1) receptors to the zona glomerulosa of the cortex and to the medulla whereas AT(2) receptors were limited to the medulla. The specificity of immunostaining was documented by pre-adsorption of the antibody with the immunogenic peptide. Our data underscore that AT(1) appears to mediate most of the physiological actions of Ang II in adrenal. Western blot analysis of rat adrenal protein extracts using AT(1) antibody showed a predominant 73-kDa band and a weaker 97-kDa immunoreactive band corresponding to glycosylated forms of the AT(1) receptor. Immunostaining with anti-AT(2) yielded one major immunoreactive band of 73-kDa size and one additional fainter band of 120 kDa. These antibodies may prove of value in unraveling the subcellular localization and intracellular effector pathways of AT(1) and AT(2).  相似文献   

18.
The type 1 (AT(1)) angiotensin receptor, which mediates the known physiological and pharmacological actions of angiotensin II, activates numerous intracellular signaling pathways and undergoes rapid internalization upon agonist binding. Morphological and biochemical studies have shown that agonist-induced endocytosis of the AT(1) receptor occurs via clathrin-coated pits, and is dependent on two regions in the cytoplasmic tail of the receptor. However, it is independent of G protein activation and signaling, and does not require the conserved NPXXY motif in the seventh transmembrane helix. The dependence of internalization of the AT(1) receptor on a cytoplasmic serine-threonine-rich region that is phosphorylated during agonist stimulation suggests that endocytosis is regulated by phosphorylation of the AT(1) receptor tail. beta-Arrestins have been implicated in the desensitization and endocytosis of several G protein-coupled receptors, but the exact nature of the adaptor protein required for association of the AT(1) receptor with clathrin-coated pits, and the role of dynamin in the internalization process, are still controversial. There is increasing evidence for a role of internalization in sustained signal generation from the AT(1) receptor. Several aspects of the mechanisms and specific function of AT(1) receptor internalization, including its precise mode and route of endocytosis, and the potential roles of cytoplasmic and nuclear receptors, remain to be elucidated.  相似文献   

19.
20.
Since it was discovered ten years ago, the angiotensin II (ANG II) type 2 (AT(2)) receptor has been an enigma. This receptor binds ANG II with a high affinity but is not responsible for mediating any of the classical physiological actions of this peptide, all of which involve the ANG II type 1 (AT(1)) receptor. Furthermore, the AT(2) receptor exhibits dramatic differences in biochemical and functional properties and in patterns of expression compared with the AT(1) receptor. During the past decade, much information has been gathered about the AT(2) receptor, and the steadily increasing number of publications indicates a growing interest in this new and independent area of research. A number of studies suggest a role of AT(2) receptors in brain, renal, and cardiovascular functions and in the processes of apoptosis and tissue regeneration. Despite these advances, nothing stands out as the major singular function of these receptors. The study of AT(2) receptors has reached a crossroads, and innovative approaches must be considered so that unifying mechanisms as to the function of these unique receptors can be put forward. In this review we will discuss the advances that have been made in understanding the biology of the AT(2) receptor. Furthermore, we will consider how these discoveries, along with newer experimental approaches, may eventually lead to the elusive physiological and pathophysiological functions of these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号