首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS 13C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes (12C, 13C, 14C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition between the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, 13C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in 14C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 ± 6 and the values of indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.  相似文献   

2.
In natural waters, the uptake of transition metals such as copper (Cu) by aquatic biota depends on the activity of the free cupric ion ({Cu2+}) rather than on total Cu concentration. Thus, an important ecological function of dissolved organic matter (DOM) in aquatic ecosystems is Cu–DOM complexation, which greatly decreases the {Cu2+}. However, Cu bioavailability is greatly modified by source and environmental history of DOM because DOM affinity for Cu varies by orders of magnitude among DOM sources; moreover, DOM is photochemically unstable. During 72-h irradiation experiments at intensities approximating sunlight with DOM from a palustrine wetland and a third-order river, we investigated photooxidative effects on DOM complexation of Cu as well as spectral and chemical changes in DOM that might explain altered Cu complexation. Irradiation decreased Cu complexation by riverine DOM, but unexpectedly increased Cu complexation by wetland DOM, resulting in 150% greater {Cu2+} in riverine DOM at the same dissolved organic carbon concentrations. The specific ultraviolet absorption (SUVa) and humic substances tracked photochemical changes in the conditional stability constants of Cu–DOM complexes, suggesting that the aromaticity of DOM influences its affinity for Cu. Carbonyl concentration in 13C nuclear magnetic resonance spectra (13C-NMR) covaried directly with Cu binding-site densities in DOM. However, no aspect of Cu–DOM complexation consistently covaried with fluorophores (i.e., the fluorescence index) or low molecular weight organic acids. Our results suggest that global increases in UV radiation will affect Cu–DOM complexation and subsequent Cu toxicity depending on light regime as well as DOM source. Handling editor: K. Martens  相似文献   

3.
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation–emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic carbon (BDOC) incubations to investigate the chemical quality of DOM in soil water collected from 25 cm piezometers in four different wetland and forest soils: bog, forested wetland, fen and upland forest. There were significant differences in soil solution concentrations of dissolved organic C, N, and P, DOC:DON ratios, SUVA254 and BDOC among the four soil types. Throughout the sampling period, average DOC concentrations in the four soil types ranged from 9–32 mg C l−1 and between 23–42% of the DOC was biodegradable. Seasonal patterns in dissolved nutrient concentrations and BDOC were observed in the three wetland types suggesting strong biotic controls over DOM concentrations in wetland soils. PARAFAC modeling of excitation–emission fluorescence spectroscopy showed that protein-like fluorescence was positively correlated (r 2 = 0.82; P < 0.001) with BDOC for all soil types taken together. This finding indicates that PARAFAC modeling may substantially improve the ability to predict BDOC in natural environments. Coincident measurements of DOM concentrations, BDOC and PARAFAC modeling confirmed that the four soil types contain DOM with distinct chemical properties and have unique fluorescent fingerprints. DOM inputs to streams from the four soil types therefore have the potential to alter stream biogeochemical processes differently by influencing temporal patterns in stream heterotrophic productivity.  相似文献   

4.
土壤溶解性有机质的特性与环境意义   总被引:34,自引:4,他引:34  
土壤生态环境是一个复杂的多介质多界面体系,尽管关于土壤溶解性有机质 研究还不完善,但现有的研究表明,它是这一环境中最为活跃的化学组成之一。由于土壤溶解性有机质在C、N、P和S等营养元素的生物地球化学过程、成土过程、微生物的生长代谢过程、土壤有南分解和转化过程以及土壤污染物的迁移过程有着重要的作用,因此已成为土壤科学、生态科学和环境科学交叉领域的研究热点,本文从土壤溶解性有机质的提取方法、来源、组成、含量和影响因素、生物有效性及环境意义等方面的研究进展作了简要的论述,同时提出了未来的研究方向。  相似文献   

5.
Abstract Microbial transformation of labile, low molecular weight dissolved organic matter (DOM) into dissolved humic matter (DHM) was studied in seawater. Surface water samples were amended with [14C into 14CO2, TO14C (total organic 14C), and PO14C (particulate organic 14C), was measured over time in confined samples. The humic and non-humic fractions of DO14C (dissolved organic 14C) were separated according to a common operational definition of DHM based on adsorption on XAD-8 macroporous resin. Both TO14C and non-humic DO14C decreased during the experiments. However, 14C-labelled DHM increased during the first week of the incubations, to a level where it comprised 15% of the TO14C remaining in the samples, or 3% of the initially added 14C. Towards the end of experiments (ca 70 days), the humic fraction of DO14C gradually approached the background level of poisoned control samples. Provided that the XAD-8 operational definition of DHM is accepted, this study indicates that humic matter may be formed in seawater within days from labile monomers such as glucose.  相似文献   

6.
This study investigated the properties and sorption by goethite of bulk (unfractionated) dissolved organic matter (DOM) from surface and shallow groundwaters at McDonalds Branch, a small freshwater fen in the New Jersey Pine Barrens (USA). Water samples were collected in the spring and fall seasons from two surface-water sampling sites, an upstream potential recharge area and a downstream discharge area, as well as from a set of in-stream nested wells in the upstream potential recharge area. Changes in DOM concentration, molecular weight distribution, and molar absorptivity at 280 nm were measured. Surface and shallow (1.6 m below land surface) groundwater samples collected in spring 1997 in the potential recharge zone (actual recharge impeded by an extensive clay lens) were found to be very similar in terms of DOM concentrations and physicochemical properties and is believe to originate from a common source. Samples taken in fall 1997 yielded no surface water because of drought conditions, and the shallow groundwater DOM collected from the recharge well contained significantly less and chemically altered DOM. This change in chemical properties is believed to be caused in part by fractionation resulting from sorption to mineral phases. Batch isotherm experiments show that sorption by goethite of the DOM from both spring surface and shallow groundwaters in the potential recharge area were similar, whereas the fall groundwater possessed a much lower affinity for the sorbent. This study demonstrated that shallow groundwaters collected under different climatic and hydrologic conditions (spring, high flow versus fall, drought conditions) resulted in different physicochemical properties and adsorption affinities.  相似文献   

7.
陆地生态系统中水溶性有机物动态及其环境学意义   总被引:30,自引:3,他引:30  
王艮梅  周立祥 《应用生态学报》2003,14(11):2019-2025
水溶性有机物(DOM)是陆地生态系统中最活跃的有机碳库,也是土壤圈层与相关圈层进行物质与能量交换的重要表现形式,它对重金属、养分元素和有机污染物的活化、迁移与生态毒性有较大影响,在农业土壤溶液中DOM浓度通常在10~80mgC·L-1,湿地土壤中多数在25~50mgC·L-1,与森林土壤剖面淋滤水中的DOM相近,但在某些微域土壤环境(如根际和有机肥施用点附近)中DOM浓度可高达200~1000mgC·L-1,不同来源的DOM在土壤中的迁移性与降解性明显不同,含低分子量组分或亲水性组分较多的DOM不易被土壤吸持而易被微生物降解,pH值相对较高的土壤(如石灰性土壤)对DOM吸附较弱,但pH较低和含有大量氧化物的土壤(如红壤、赤红壤和砖红壤等)则对DOM的吸附较强,施用石灰、土壤淹水或干湿交替、温度升高等有利于土壤保持较高的DOM浓度,由于DOM-金属配合物的形成,DOM能明显促进土壤重金属活化和向下迁移,而且DOM中低分子量或亲水性组分所占比例越低活化作用越强,同样地,由于DOM具有两亲性质,也能明显提高疏水性有机污染物(如农药和持久难降解有机污染物)的水溶性,增加其对环境污染的风险,特别是含疏水性组分越多的DOM这种作用越强.可以认为,继续加强有关DOM在陆地生态系统中产生与消长规律,特别是DOM及其与污染物的配合物从陆地生态系统向水体迁移的机理及其通量的研究,对合理预测污染物的环境行为和科学地进行环境风险评估有重要意义。  相似文献   

8.
Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.  相似文献   

9.
Complexation between Hg(II) and dissolved organic matter (DOM) collected from streams in Ontario, Canada, was studied using three-dimensional excitation emission matrix (3DEEM) fluorescence spectroscopy. The results show that DOM reacted with Hg(II) rapidly, and the complexation reached pseudo-equilibrium within 20 s. Maximum excitation/emission (Ex/Em) wavelengths shifted towards the longer wavelengths, indicating that DOM structure changed during its interaction with Hg(II). Using fluorescence quenching titrations, complexing parameters, conditional stability constants and the percentage of fluorophores participating in the complexation, were estimated by the modified Stern–Volmer equation. The experimental and field survey results suggest that the Hg–DOM complexation in various streams was related to water quality parameters, e.g. DOC, Cl–, and cation concentrations, and was strongly affected by UV irradiation.  相似文献   

10.
Dissolved organic matter (DOM) in sediment porewaters from Lake Erhai, Southwest China was investigated using dissolved organic carbon (DOC) concentration, UV absorbance, fluorescence and molecular weight distribution. DOC exhibited a high concentration at the sediment–water interface with a rapid decrease to the oxic–anoxic interface at approximately 7 cm, and then increased with depth. Similar trends were also found for the UV absorption coefficients at 254 and 280 nm in the porewaters. DNA in the sediment was also measured, which confirmed the high abundance of aerobic bacteria in the upper layer of the sediment. Both humic-like (peaks A and C) and protein-like (peaks B and D) fluorescence were observed in the porewater DOM, and their fluorescence intensities exhibited a similar porewater profile as DOC concentration. A strong correlation was found between the peak fluorescence intensity ratio r(A, C) and r(D, B). Both the fluorescence index and UV absorption coefficient at 254 nm suggested a dramatic increase in aromaticity of porewater DOM across the oxic–anoxic interface. Porewater DOM exhibited a multimodal distribution of molecular weight with a relatively low polydispersity. The results of this study offer significant insight into the nature and properties of DOM in freshwater ecosystems.  相似文献   

11.
Plant species effects on soil nutrient availability are relatively well documented, but the effects of species differences in litter chemistry on soil carbon cycling are less well understood, especially in the species-rich tropics. In many wet tropical forest ecosystems, leaching of dissolved organic matter (DOM) from the litter layer accounts for a significant proportion of litter mass loss during decomposition. Here we investigated how tree species differences in soluble dissolved organic C (DOC) and nutrients affected soil CO2 fluxes in laboratory incubations. We leached DOM from freshly fallen litter of six canopy tree species collected from a tropical rain forest in Costa Rica and measured C-mineralization. We found significant differences in litter solubility and nutrient availability. Following DOM additions to soil, rates of heterotrophic respiration varied by as much as an order of magnitude between species, and overall differences in total soil CO2 efflux varied by more than four-fold. Variation in the carbon: phosphorus ratio accounted for 51% of the variation in total CO2 flux between species. These results suggest that tropical tree species composition may influence soil C storage and mineralization via inter-specific variation in plant litter chemistry.  相似文献   

12.
The Yenisei river passes every type of permafrost regime, from south to north, being characterized by increasing continuity of the permafrost and by decreasing thickness of the active layer. We used that situation to test the hypothesis that amounts and properties of dissolved organic matter (DOM) in small streams draining forested catchments respond to different permafrost regimes. Water samples were taken from eight tributaries along the Yenisei between 67°30′N and 65°49′N latitude. The samples were analysed for dissolved organic carbon (DOC) and nitrogen (DON) and DOM was characterized by its chemical composition (XAD‐8 fractionation, sugars, lignin phenols, amino acids, protein, UV and fluorescence spectroscopy), and its biodegradability. Most properties of the tributary waters varied depending on latitude. The higher the latitude, the higher were DOC, DON and the proportion of the hydrophobic fraction of DOC. The contribution of hexoses and pentoses to DOC were higher in southern tributaries; on the other hand, phenolic compounds were more abundant in northern tributaries. Mineralizable DOC ranged between 4% and 28% of total DOC. DOM in northern tributaries was significantly (P<0.05) less biodegradable than that in southern tributaries reflecting the differences in the chemical properties of DOM. Our results suggest that the differences in DOM properties are mainly attributed to differences of permafrost regime, affecting depth of active layer, soil organic matter accumulation and vegetation. Soil organic matter and vegetation determine the amount and composition of DOM produced in the catchments while the depth of the active layer likely controls the quantity and quality of DOM exported to streams. Sorptive interactions of DOM with the soil mineral phase typically increase with depth. The results imply that a northern shift of discontinuous permafrost likely will change in the long term the input of DOM into the Yenisei and thus probably into the Kara Sea.  相似文献   

13.
Quantitative and qualitative characterizations of dissolved organic matter (DOM) were carried out at the watershed level in central Japan by measuring dissolved organic carbon (DOC) concentration and the three-dimensional excitation–emission matrix (3-D EEM). DOC concentration was low (mean 37 ± 19 µM C) in the upstream waters, whereas, in general, it increased toward the downstream areas (mean 92 ± 47 µM C). Significant variations in DOC concentration were detected among rivers and channels. DOC concentration in the epilimnion of Lake Biwa increased during the summer period and decreased during the winter period. The lake hypolimnion has lower DOC concentration (mean 87 ± 7 µM C) compared with the epilimnion (107 ± 15 µM C). Fulvic acid (FA)-like substances in the DOM were directly characterized by 3-D EEM. The fluorescence peak for upstream DOM was found in regions with longer wavelengths (excitation/emission 386 ± 6/476 ± 5 nm) compared with downstream and lake DOM (351 ± 12/446 ± 15 nm and 341 ± 6/434 ± 6 nm, respectively). The DOC concentration is correlated with fluorescence peak intensity of FA-like substances in DOM in river waters. Such a relationship was not found in lake DOM. A blueshift of the fluorescence peak from upstream to lake DOM was observed. A decrease in fluorescence intensities was also detected during the summer period. These results may suggest that the degradation of FA-like substances in DOM occurs from natural solar irradiation. Protein-like fluorescence was significantly detected in the lake epilimnion during the summer period. A linear relationship between DOC concentration and protein-like fluorescence indicated that an autochthonous input of DOM gave rise to the increase in DOC concentration in the lake epilimnion during the summer. These results may suggest that the 3-D EEM can be used as a tool for the investigation of DOM dynamics at the watershed level with concurrent measurement of DOC concentration and the fluorescence properties of fulvic acid-like and protein-like substances.  相似文献   

14.
Dissolved organic matter (DOM) in seawater can be defined as the fraction of organic matter that passes through a filter of sub micron pore size. In this study, we have examined the effect of DOM of deep seawater (DSW) from Pacific Ocean on platelet aggregation and atherosclerosis progression. DSW was passed through a series of filters and then through an Octadecyl C18 filter; the retained substance in ethanol was designated as C18 extractable DOM (C18-DOM). Our studies showed that C18-DOM treatment inhibited platelet aggregation, P-selectin expression and activity of COX-1 significantly. C18-DOM increased the expression of anti-atherogenic molecule namely heme oxygenase-1 in endothelial cells and all these data showed that C18-DOM is exhibiting aspirin-like effects. Moreover our in vivo studies showed that C18-DOM feeding slowed remarkably the progression of atherosclerosis. Our study demonstrated a novel biological effect of oceanic DOM, which has several important implications, including a possible therapeutic strategy for atherosclerosis.  相似文献   

15.
溶解性有机质对土壤中有机污染物环境行为的影响   总被引:28,自引:4,他引:28  
土壤中溶解性有机质(DOM)是生物活性和物理化学反应活性都很活跃的有机组分,主要通过疏水吸附、分配、氢键、电荷转移、共价键、范德华力等多种作用与有机污染物结合,提高溶液中有机污染物的溶解度,改变土壤中有机污染物的吸附-解吸、迁移-转化等环境行为.DOM对有机污染物的吸附-解吸、迁移-转化过程的影响有双重性:一方面,DOM与有机污染物在土壤表面的共吸附可增加土壤对有机污染物的吸附容量,促进有机污染物在土壤中的吸持;另一方面,DOM对有机污染物的增溶作用,有利于土壤中有机污染物的解吸,提高移动性.作为光敏剂,DOM能提高土壤中有机物的光解反应速率.在一定条件下,DOM也可影响土壤中有机污染物的水解过程.DOM对土壤中有机污染物环境行为的影响与DOM和有机污染物的性质及其相互作用的介质条件密切相关.  相似文献   

16.
The net production of dissolved organic matter (DOM) and dissolved combined and free amino acids (DCAA and DFAA, respectively) by the hermatypic coral Acropora pulchra was measured in the submerged condition, and the production rates were normalized to the coral surface area, tissue biomass, and net photosynthetic rates by zooxanthellae. When normalized to the unit surface area, the production rates of dissolved organic carbon and nitrogen (DOC and DON, respectively) were 37 and 4.4 nmol cm− 2 h− 1, respectively. Comparing with the photosynthetic rate by zooxanthellae, which was measured by 13C-tracer accumulation in the soft tissue of the coral colony, the release rate of DOC corresponded to 5.4% of the daily net photosynthetic production. The tissue biomass of the coral colony was 178 µmol C cm− 2 and 23 µmol N cm− 2, indicating that the release of DOC and DON accounted for 0.021% h− 1 and 0.019% h− 1 of the tissue C and N, respectively. The C:N ratios of the released DOM (average 8.4) were not significantly different from those of the soft tissue of the coral colonies (average 7.7). While DFAA did almost not accumulate in the incubated seawater, DCAA was considerably released by the coral colonies at the rate of 2.1 nmol cm− 2 h− 1 on average. Calculating C and N contents of the hydrolyzable DCAA, it was revealed that about 20% and 50%–60% of the released bulk DOC and DON, respectively, were composed of DCAA.  相似文献   

17.
Weekly measurements during the open season at five stations on a small Ontario stream system showed that the size distribution of fine particles in the water varied irregularly. In general, rainfall increased their total amount and also the concentration of dissolved organic carbon. Clearly other local factors affect the supply of particles, and each reach behaves individually and may react differently to successive storms. The behaviour of dissolved material is more predictable, and it is clear that much is rapidly removed from solution. It was shown that high concentrations of particles are associated with high amounts of plant pigments, carbohydrate, and protein. Similarly dissolved carbohydrate and protein are raised when rain increases dissolved organic carbon. These findings suggest a series of mechanisms by which a woodland stream may trap woodland produced energy and cycle it through the aquatic system.This work was supported by a research grant from the National Research Council of Canada to H. B. N. Hynes.  相似文献   

18.
水溶性有机物(DOM)是有机物质中最为活跃的组成部分,在陆地生态系统物质的迁移转化过程中起重要作用.通过田间试验和室内理化分析证明了DOM在土壤剖面迁移过程中存在明显的“分馏”现象,随着土层深度的增加,对照、施化肥和施污泥处理土壤DOM的浓度分别由145.8、117.7和114.8mg·kg^-1降到21.57、23.23和13.78mg·kg^-l;不施肥和施化肥处理的土壤DOM随着深度的增加,极性物质所占的比例分别由19.01%和18.47%增至34.97%与44.37%,呈上升趋势,而非极性组分所占比例相应降低;施污泥处理则出现相反的规律,极性组分由36.96%降到17.07%,非极性组分由63.04%增为82.93%.土壤DOM的生物降解率由上到下对照和施化肥处理分别由24.38%和24.00%增大到54.74%和53.81%,而施污泥处理的变化规律则相反,由53.19%降到30.75%.DOM的生物降解率与DOM中极性物质的含量呈正相关关系.紫外光谱进一步证实了这一结果.  相似文献   

19.
Coarse woody debris (CWD) may play a role in nutrient cycling in temperate forests through the leaching of solutes, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), to the underlying soil. These fluxes need to be considered in element budget calculations, and have the potential to influence microbial activity, soil development, and other processes in the underlying soil, but studies on leaching from CWD are rare. In this study, we collected throughfall, litter leachate, and CWD leachate in situ at a young mixed lowland forest in NY State, USA over one year. We measured the concentrations of DOC, DON, NH4+, NO3, dissolved organic sulfur, SO42−, Cl, Al, Ca, K, Mg, Na, and P, estimated the flux of these solutes in throughfall, and measured the cover of CWD to gain some insight into possible fluxes from CWD. Concentrations of DOC were much higher in CWD leachate than in throughfall or litter leachate (15 vs. 0.7 and 1.6 mM, respectively), and greater than reported values for other leachates from within forested ecosystems. Other solutes showed a similar pattern, with inorganic N being an exception. Our results suggest that microsite scale fluxes of DOC from CWD may be An high relative to throughfall and litter leaching fluxes, but since CWD covered a relatively small fraction (2%) of the forest floor in our study, ecosystem scale fluxes from CWD may be negligible for this site. Soil directly beneath CWD may be influenced by CWD leaching, in terms of soil organic matter, microbial activity, and N availability. Concentrations of some metals showed correlations to DOC concentrations, highlighting the possibility of complexation by DOM. Several solute concentrations in throughfall, including DOC, showed positive correlations to mean air temperature, and fewer showed positive correlations in litter leachate, while negative correlations were observed to precipitation, suggesting both biological and hydrologic control of solute concentrations.  相似文献   

20.
水溶性有机质对土壤中镉吸附行为的影响   总被引:67,自引:7,他引:67  
水溶性有机质 (DOM)是陆地生态系统和水生生态系统中的一种很活跃的组分 .本文以赤红壤、水稻土和褐土作为供试土壤 ,研究了来源于稻秆和底泥的DOM对土壤中Cd吸附行为的影响 .DOM对土壤中Cd的吸附行为具有明显的抑制作用 .这种抑制作用与土壤类型和DOM种类有关 .在 3种供试土壤中 ,无论添加稻秆DOM还是底泥DOM ,都会使Cd的最大吸附容量和吸附率明显降低 ,其下降幅度为17 3%~ 93 9%.在添加同一种DOM的前提下 ,DOM对Cd吸附的抑制作用均为 :赤红壤 >水稻土 >褐土 .如果不添加DOM ,则土壤对Cd的最大吸附容量主要取决于土壤固相的吸附特性 ,添加DOM后土壤对Cd的最大吸附容量则主要取决于液相中的DOM .由此推断 ,传统的看法 ,通过施用有机肥来固定土壤中的Cd并达到治理重金属污染土壤的观点值得商榷 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号