首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dipyridamole (DIP), a coronary vasodilator, presents coactivator activity for a number of antitumor drugs as well as antioxidant activity in membrane systems. DIP and derivatives interact with membrane systems such as micelles, phospholipid monolayers and vesicles. The antioxidant effect of DIP and several derivatives upon iron-induced lipoperoxidation on mitochondria has been reported and a good correlation between the hydrophobicity and their protective effect was found (M.F. Nepomuceno et al., Free Radic. Biol. Med., 23 (1997) 1046-1054). In the present work an effort is made to better understand the role of DIP as inhibitor of Fe2+-induced lipid peroxidation in mitochondria. At low concentration, no significant effect on either state IV or state III respiration was found, discarding a possible direct interaction of DIP or RA-25 with the peripheral benzodiazepine receptor. The association constants for DIP and RA-25 in mitochondria were estimated, being 0.7 (mg/ml)-1 for DIP and 0.2 (mg/ml)-1 for RA-25. Oxygen consumption studies in the presence of FeSO4 showed that the antioxidant effect of DIP or RA-25 did not involved the initial step of Fe2+ oxidation. Our data strongly support the hypothesis that the antioxidant effect of both DIP and RA-25 is related to their partition in the lipid phase of the mitochondrial membrane and not to a specific interaction with membrane proteins. This protection may be due either to a direct inhibition of the propagation steps or a scavenger effect on the radicular species that would trigger the peroxidative process.  相似文献   

2.
The antioxidant effects of dipyridamol (DIP), a coronary vasodilator, and its derivative RA-25 were compared in intact red blood cells (RBC) and in isolated ghost membranes. Both compounds are quite effective antioxidants in cumene hydroperoxide-induced lipid peroxidation of RBC, showing a much smaller effect for hydrogen peroxide oxidation. The antioxidant effect of DIP was considerably higher than that of RA25. For isolated ghost membranes, the apparent IC50 (the drug concentration that produces 50% inhibition of lipid peroxidation) in cumene hydroperoxide-induced peroxidation was 25 microM, while the maximum protective effect of RA-25 was around 30% in the drug concentration range of 50-100 microM. The drugs can protect the oxidative hemolysis induced by cumene hydroperoxide with a lower effect when the hemolysis is induced by H2O2. The significant antioxidant effect against damages induced by cumene hydroperoxide suggests that DIP, due to its lipophilic character, can interact with RBC membranes, and the protective effect is associated with the binding of the drug to the membrane. On the other hand, RA-25 is more hydrophilic than DIP, binds to the membrane to a smaller extent, and, for this reason, has a lower antioxidant effect.  相似文献   

3.
Results from various surface sensitive characterization techniques suggest a model for the interaction of the piperidinopyrimidine dipyridamole (DIP)--known as a vasodilator and inhibitor of P-glycoprotein associated multidrug resistance of tumor cells--with phospholipid monolayers in which the drug is peripherally associated with the membrane, binding (up to) five phospholipids at a time. These multiple interactions are responsible for a very strong association of the drug with the lipid monolayer even at exceedingly low concentrations (approximately 0.2 mol%). Electrostatic interactions and hydrogen bonding are likely involved in the binding of DIP to DPPC. Cooperative effects among the lipids are invoked to explain the macroscopically measurable changes of lipid monolayer properties even when only one out of 100 DPPC molecules is directly associated with a DIP molecule. A reversal of the observed changes upon drug association with the membrane as the DIP concentration surpasses a threshold concentration (c(crit)approximately 0.5 mol%) may be explained by cooperativity in a different context, the self-aggregation of drug molecules. With its implications for the interaction of DIP with phospholipid films, this work provides a first approach to the explanation of the high sensitivity of cell membranes to piperidinopyrimidine drugs on a molecular level.  相似文献   

4.
The aim of this paper was to clarify whether the interaction of the lazaroid U-74389G with phospholipid membranes might be relevant as to its antioxidant activity. Thus we evaluated the "in vitro" antioxidant activity of U-74389G in two experimental models: 1) bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical; 2) peroxidation, induced by the water-soluble radical initiator 2,2'-azobis(2-amidino-propane) hydrochloride, on mixed dipalmitoyl-phosphatidylcholine/linoleic acid unilamellar vesicles. Moreover, given that biophysical techniques may help in explaining the role of a drug in its interaction with the microenvironment of the model lipid membranes, we used a classical approach to investigate the U-74389G/model membrane interaction: the differential scanning calorimetry technique on dimyristoylphosphatidylcholine multilamellar and unilamellar vesicles and the Langmuir-Blodgett technique on dimyristoylphosphatidylcholine monolayers. The results evidenced the strong antioxidant activity of U-74389G (especially in a membranous system) and its capability to interact with and be transported across model membranes. Thus one can speculate that U-74389G can act as scavenger of chain-propagating lipid peroxyl radicals within the membranes and may be able to protect not only cell membranes, but also intracellular components against peroxidative attack. Furthermore, also if there is no certain proof that the effect on the lipid packing order may play a key role in its antioxidant activity, the fluidifying effect on phospholipid bilayers of U-74389G favourably complements its free radical scavenging characteristics.  相似文献   

5.
The study of the effect of vasodilator, antiplatelet agent, and inhibitor P-glycoprotein dipyridamole (DIP) on the functioning of the transmembrane protein of the reaction center (RC) of Rb. sphaeroides showed that the activation of RC by constant light generates the DIP radical cation, which significantly affects the kinetics of recombination of charges divided between photoactive bacteriochlorophyll and quinone acceptors. Thus, the antioxidant properties of DIP may affect the functional activity of membrane proteins, and this apparently should be taken into account in the studies of the mechanisms of therapeutic action of this drug.  相似文献   

6.
The role of lipids in membrane structure and function was studied by measuring the major lipid classes in mitochondria isolated from flight muscle of the blowfly, Phormia regina. Approximately 98% of the total lipid is phospholipid. Neutral lipid constitutes the remaining 2% of the total. Phosphatidylethanolamine accounts for 55–60% of the phospholipid. A molecular ratio of 4:1:1 is found for phosphatidylethanolamine, phosphatidylcholine, and cardiolipin (diphosphatidylglycerol). The neutral lipids include cholesterol, about 20%, and quinone, 40–45% of the total. The free fatty acid content of the neutral lipid fraction is variable, apparently being generated by endogenous phospholipase activity. The fatty acids of the neutral and phospholipid classes are predominantly 14–18 carbon acids; long-chain fatty acids of 20 and 22 carbons are essentially absent. The neutral lipid fraction contains 43% saturated and 51% monoenoic fatty acids. More than 65% of the phospholipid fatty acids are unsaturated. The principal fatty acids are palmitic, palmitoleic, oleic, linoleic, and linolenic. No trace of α- or β-tocopherol is detected. As vitamin E is considered an important naturally occuring antioxidant that prevents lipid peroxidation, the apparent absence of α- and β-tocopherol in these mitochondria coupled with intense oxidative activity of the mitochondria leads to the suggestion that blowfly flight muscle mitochondria may be particularly susceptible to peroxidative damage.  相似文献   

7.
Short-chain, fluorescent derivatives are commonly used to investigate intracellular phospholipid trafficking. However, their use can yield misleading results because they, unlike the native species, can rapidly distribute between organelles due to their low hydrophobicity. On the other hand, hydrophobic derivatives are very difficult to introduce to cells and thus have hardly been used. Here we show that carboxyethylated gamma-cyclodextrin (CE-gamma-CD) greatly enhances transfer of a variety of hydrophobic fluorescent phospholipid derivatives from vesicles to cultured cells. Several lines of evidence indicate that CE-gamma-CD enhances transfer of lipid molecules by increasing their effective concentration in the aqueous phase, rather than by inducing membrane fusion or hemifusion. Incubation with CE-gamma-CD and donor lipid vesicles does not extract cholesterol or phospholipids from the cells or compromise plasma membrane intactness or long term cell viability. Using CE-gamma-CD-mediated transfer, we introduced hydrophobic pyrene-labeled phosphatidylserine to the plasma membrane of fibroblast cells and followed their distribution with time. In contrast to what has been previously observed for other, less hydrophobic species, transport of this lipid to the Golgi apparatus or mitochondria was not detected. Rather, much of this fluorescent PS remained in the plasma membrane or was incorporated to various endocytotic compartments. These findings indicate that the native, typically hydrophobic phosphatidylserine molecules efflux only very slowly via the cytoplasm to intracellular organelles. This helps to explain how cells can maintain a very high concentration of phosphatidylserine in the inner leaflet of their plasma membrane. Furthermore, the present results underline the importance of using hydrophobic analogues when studying intracellular trafficking of many phospholipid classes.  相似文献   

8.
Rhomboids comprise a family of intramembrane serine proteases that catalyze the cleavage of transmembrane segments within the lipid membrane to achieve a wide range of biological functions. A subset of bacterial rhomboids possesses an N-terminal cytosolic domain that appears to enhance proteolytic activity via an unknown mechanism. Structural analysis of a full-length rhomboid would provide new insights into this mechanism, an objective that solution NMR has the potential to realize. For this purpose we purified the rhomboid from Pseudomonas aeruginosa in a range of membrane-mimetic media, evaluated its functional status in vitro and investigated the NMR spectroscopic properties of these samples. In general, NMR signals could only be observed from the cytosolic domain, and only in detergents that did not support rhomboid activity. In contrast, media that supported rhomboid function did not show these resonances, suggesting an association between the cytosolic domain and the protein-detergent complex. Investigations into the ability of the isolated cytosolic domain to bind detergent micelles revealed a denaturing interaction, whereas no interaction occurred with micelles that supported rhomboid activity. The cytosolic domain also did not show any tendency to interact with lipid bilayers found in small bicelles or vesicles made from Escherichia coli phospholipid extracts. Based on these data we propose that the cytosolic domain does not interact with the lipid membrane, but instead enhances rhomboid activity through interactions with some other part of the rhomboid, such as the catalytic core domain.  相似文献   

9.
The influence and interaction of the ionizable amphiphilic drug amitriptyline hydrochloride (AMT) on a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid bilayer supported on a silica surface have been investigated using a combination of neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Adding AMT solutions with concentrations 3, 12, and 50 mM leaves the lipid bilayer mainly intact and we observe most of the AMT molecules attached to the head-group region of the outer bilayer leaflet. Virtually no AMT penetrates into the hydrophilic head-group region of the inner leaflet close to the silica surface. By adding 200 mM AMT solution, the lipid bilayer dissolved entirely, indicating a threshold concentration for the solubilization of the bilayer by AMT. The observed threshold concentration is consistent with the observation that various bilayer structures abruptly transform into mixed AMT-DOPC micelles beyond a certain AMT-DOPC composition. Based on our experimental observations, we suggest that the penetration of drug into the phospholipid bilayer, and subsequent solubilization of the membrane, follows a two-step mechanism with the outer leaflet being removed prior to the inner leaflet.  相似文献   

10.
The metabolites 2-octaprenyl-1,4-hydroquinone (1) and 2-(24-hydroxy)-octaprenyl-1,4-hydroquinone (2), isolated from the sponge Ircinia spinosula, along with a series of synthetic derivatives, were evaluated for their antioxidant capacity, in order to establish a potential relationship between structural characteristics and antioxidant activity. The antioxidant potential of both natural and synthesised compounds was evaluated in vitro by their ability: (1) to interact with the stable free 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and (2) to inhibit the peroxidation, induced by the Fe(++)/ascorbate system, of heat inactivated hepatic microsomal membrane lipids. Metabolite 1 presented a strong interaction with DPPH and had a moderate effect on lipid peroxidation, while metabolite 2 interacted extensively with DPPH and exhibited a significant effect against lipid peroxidation. All derivatives retaining the free 1,4-hydroquinone system maintained fully or partly the free radical scavenging capacity.  相似文献   

11.
Lipid rafts and mitochondria are promising targets in cancer therapy. The synthetic antitumor alkyl-lysophospholipid analog edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) has been reported to target lipid rafts. Here, we have found that edelfosine induced loss of mitochondrial membrane potential and apoptosis in human cervical carcinoma HeLa cells, both responses being abrogated by Bcl-xL overexpression. We synthesized a number of new fluorescent edelfosine analogs, which preserved the proapoptotic activity of the parent drug, and colocalized with mitochondria in HeLa cells. Edelfosine induced swelling in isolated mitochondria, indicating an increase in mitochondrial membrane permeability. This mitochondrial swelling was independent of reactive oxygen species generation. A structurally related inactive analog was unable to promote mitochondrial swelling, highlighting the importance of edelfosine molecular structure in its effect on mitochondria. Raft disruption inhibited mitochondrial localization of the drug in cells and edelfosine-induced swelling in isolated mitochondria. Edelfosine promoted a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. Our data suggest that direct interaction of edelfosine with mitochondria eventually leads to mitochondrial dysfunction and apoptosis. These observations unveil a new framework in cancer chemotherapy that involves a link between lipid rafts and mitochondria in the mechanism of action of an antitumor drug, thus opening new avenues for cancer treatment.  相似文献   

12.
Novel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture. Reduced forms of SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In isolated mitochondria and in living cells, the berberine and palmatine moieties were not reduced, so antioxidant activity belonged exclusively to the plastoquinol moiety. In human fibroblasts, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. At higher concentrations, conjugates of berberine and palmatine induced proton transport mediated by free fatty acids both in model and in mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. As an example of application of the novel mitochondria-targeted antioxidants SkQBerb and SkQPalm to studies of signal transduction, we discuss induction of cell cycle arrest, differentiation, and morphological normalization of some tumor cells. We suggest that production of oxygen radicals in mitochondria is necessary for growth factors-MAP-kinase signaling, which supports proliferation and transformed phenotype.  相似文献   

13.
The drug tiamulin interacts with phospholipid membranes mainly in a nonelectrostatic way. At pH-values where the drug possesses a net positive charge only small binding is observed. In the presence of cholesterol tiamulin is excluded from the membranes. The interaction of tiamulin with membranes cannot be explained by a simple partitioning but is governed by structural rearrangements of the lipid phase. At low drug concentrations we observe sigmoidal binding characteristics in the rigid as well as in the fluid state up to a level of about 2-3 mol drug bound per 1000 mol phospholipid. The range in which this cooperative interaction occurs can be compared with the drug concentration in the erythrocyte membrane which protects from hypotonic lysis. Further addition of tiamulin to the rigid membrane leads to fluidization. Saturation of the membranes with tiamulin is completely in parallel to their fluidization. The relevance of the cooperative interaction at low drug concentration and of the subsequent fluidization at elevated concentration for the microsomal membrane is discussed.  相似文献   

14.
The effects of four catechins, (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG), on the physical properties of phospholipid model membranes and the correlation to their antioxidant and antibacterial capacities have been studied by using differential scanning calorimetry (DSC), fluorescence spectroscopy, infrared spectroscopy (IR), AAPH-induced oxidation, and leakage experiments. DSC data revealed that galloylated catechins, especially ECG, affected the physical properties of both the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) bilayers dramatically. Galloylated catechins showed higher phospholipid/water partition coefficients than their homologues and were immersed in the phospholipid palisade intercalating within the hydrocarbon chains, ECG being at the deepest position. In contrast, nongalloylated catechins presented a shallow location close to the phospholipid/water interface. ECG also exhibited the highest antioxidant capacity against lipid peroxidation, which correlated with its strong effect on DPH fluorescence anisotropy (as observed by the increase of the lipid order of fluid PC bilayers) and with the presence of highly cooperative transitions as seen by DSC. We propose that the high antioxidant capacity of some galloylated catechins such as ECG could be partially due to the formation of membrane structures showing resistance to detergent solubilization and in which the phospholipids have tightly packed acyl chains and highly hydrated phosphate groups. Significantly, PE was found to be essential to the promotion of carboxyfluorescein leakage from bacterial model membranes by galloylated catechins, indicating that their bactericidal activity, at least at the membrane level, could be due to the specific effect of these catechins on PE.  相似文献   

15.
Considering the lipophilicity of aspirin (log P = -1.15), a significant contributor to its action mechanism, interaction of the drug with the whole lipids of goat blood have been investigated using phospholipid binding and lipid peroxidation phenomena as the parameters under investigation. The lipid content change along with the peroxidation induced by aspirin and its suppression with ascorbic acid had been quantitatively measured. Significant loss in phospholipid was observed after incubation of whole blood with aspirin in varying periods of time. This may be ascribed to binding affinity of aspirin with lipid constituents in blood, which may have potential role in its therapeutic effect. Lipid peroxidation induction potential of aspirin caused significant extent of peroxidation. Ascorbic acid, an antioxidant could significantly reduce aspirin induced lipid peroxidation.  相似文献   

16.
Exogenous molecules from dietary sources such as polyphenols are very efficient in preventing the alteration of lipid membranes by oxidative stress. Among the polyphenols, we have chosen to study rosmarinic acid (RA). We investigated the efficiency of RA in preventing lipid peroxidation and in interacting with lipids. We used liposomes of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) to show that RA was an efficient antioxidant. By HPLC, we determined that the maximum amount of RA associated with the lipids was ~1 mol%. Moreover, by using Langmuir monolayers, we evidenced that cholesterol decreases the penetration of RA. The investigation of transferred lipid/RA monolayers by atomic force microscopy revealed that 1 mol% of RA in the membrane was not sufficient to alter the membrane structure at the nanoscale. By fluorescence, we observed no significant modification of membrane permeability and fluidity caused by the interaction with RA. We also deduced that RA molecules were mainly located among the polar headgroups of the lipids. Finally, we prepared DLPC/RA vesicles to evidence for the first time that up to 1 mol% of RA inserts spontaneously in the membrane, which is high enough to fully prevent lipid peroxidation without any noticeable alteration of the membrane structure due to RA insertion.  相似文献   

17.
The antioxidant activity and the membrane effects of the flavanols (-)-epicatechin, (+)-catechin, and their related oligomers, the procyanidins, were evaluated in liposomes composed by phosphatidylcholine:phosphatidylserine (60:40, molar ratio). When liposomes were oxidized with a steady source of free radicals, the flavanols and procyanidins (25 microM monomer equivalents) inhibited oxidation in a manner that was related to procyanidin chain length. Flavanols and procyanidins did not influence membrane fluidity or lipid lateral phase separation. However, flavanols and procyanidins induced a decrease in the membrane surface potential and protected membranes from detergent-induced disruption. These effects were dependent on flavonoid concentration, procyanidin chain length, and membrane composition. Flavanol- and procyanidin-induced inhibition of lipid oxidation was correlated with their effect on membrane surface potential and integrity. These results indicate that the interaction of flavanols and procyanidins with phospholipid head groups, particularly with those containing hydroxyl groups, is associated with a reduced rate of membrane lipid oxidation. Thus, flavanols and procyanidins can potentially reduce oxidative modifications of membranes by restraining the access of oxidants to the bilayer and the propagation of lipid oxidation in the hydrophobic membrane matrix.  相似文献   

18.
Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear. Tryptophanyl fluorescence quenching by acrylamide shows that a significant fraction of the Trp residues sensing the quencher become less readily available to it in the absence of surfactant. The temperature dependence of enzyme activity (expressed in the form of Arrhenius plots) is also different in the presence and absence of detergent. The effects of surfactant removal do not appear to be readily reversible upon readdition of Triton X-100.  相似文献   

19.
Antimicrobial peptides, isolated from the dorsal glands of Australian tree frogs, possess a wide spectrum of biological activity and some are specific to certain pathogens. These peptides have the capability of disrupting bacterial membranes and lysing lipid bilayers. This study focused on the following amphibian peptides: (1) aurein 1.2, a 13-residue peptide; (2) citropin 1.1, with 16 residues; and (3) maculatin 1.1, with 21 residues. The antibiotic activity and structure of these peptides have been studied and compared and possible mechanisms by which the peptides lyse bacterial membrane cells have been proposed. The peptides adopt amphipathic -helical structures in the presence of lipid micelles and vesicles. Specifically 15N-labelled peptides were studied using solid-state NMR to determine their structure and orientation in model lipid bilayers. The effect of these peptides on phospholipid membranes was determined by 2H and 31P solid-state NMR techniques in order to understand the mechanisms by which they exert their biological effects that lead to the disruption of the bacterial cell membrane. Aurein 1.2 and citropin 1.1 are too short to span the membrane bilayer while the longer maculatin 1.1, which may be flexible due to the central proline, would be able to span the bilayer as a transmembrane -helix. All three peptides had a peripheral interaction with phosphatidylcholine bilayers and appear to be located in the aqueous region of the membrane bilayer. It is proposed that these antimicrobial peptides have a "detergent"-like mechanism of membrane lysis.This paper was submitted as a record of the 2002 Australian Biophysical Society  相似文献   

20.
Novel amide derivatives of trolox, 3,5-di-tert-butyl-4-hydroxybenzoic acid, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid and cinnamic acid with cysteamine and l-cysteine ethyl ester were synthesised. In four cases, the disulfide derivatives were also isolated and tested. All compounds were examined for antioxidant activity, expressed as their ability to inhibit lipid peroxidation and to scavenge free radicals. They were found to demonstrate up to 17-fold better activity than that of the parent antioxidant acids. They could reduce acute inflammation up to 87%. The most active antioxidant compounds were further tested for their in vivo hypolipidemic effect, which ranged from 47% to 73%, and for their ability to protect the liver against oxidative toxicity caused by high paracetamol dose. The disulfide derivatives of 3,5-di-tert-butyl-4-hydroxybenzoic acid and cinnamic acid had no antioxidant activity and presented equal or lower anti-inflammatory effect than their thiol analogues, indicating that their molecular characteristics may not permit biological barrier penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号