首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basis for the outcome of competition between sulfidogens and methanogens for H2 was examined by comparing the kinetic parameters of representatives of each group separately and in co-culture. Michaelis-Menten parameters (V max and K m) for four methanogens and five sulfate-reducing bacteria were determined from H2-depletion data. Further, Monod growth parameters (max, K s, Y H2) for Desulfovibrio sp. G11 and Methanospirillum hungatei JF-1 were similarly estimated. H2 K m values for the methanogenic bacteria ranged from 2.5 M (Methanospirillum PM1) to 13 M for Methanosarcina barkeri MS; Methanospirillum hungatei JF-1 and Methanobacterium PM2 had intermediate H2 K m estimates of 5 M. Average H2 K m estimates for the five sulfidogens was 1.2 M. No consistent difference among the V max estimates for the above sulfidogens (mean=100 nmol H2 min-1 mg-1 protein) and methanogens (mean=110 nmol H2 min-1 mg-1 protein) was found. A two-term Michaelis-Menten equation accurately predicted the apparent H2 K m values and the fate of H2 by resting co-cultures of sulfate-reducers and methanogens. Half-saturation coefficients (K s) for H2-limited growth of Desulfovibrio sp. G11 (2–4 M) and Methanospirillum JF-1 (6–7 M) were comparable to H2 K m estimates obtained for these organisms. Maximum specific growth rates for Desulfovibrio sp. G11 (0.05 h-1) were similar to those of Methanospirillum JF-1 (0.05–0.06 h-1); whereas G11 had an average yield coefficient 4 x that of JF-1. Calculated max and V max/K m values for the methanogens and sulfidogens studied predict that the latter bacterial group will process more H2 whether these organisms are in a growing or resting state, when the H2 concentration is in the first-order region.  相似文献   

2.
Enteropeptidase (enterokinase, EC 3.4.21.9) hydrolyzes peptide bonds formed by carboxyl groups of Lys or Arg residue if less than four negatively charged amino acid residues are in positions P 2P 5 of its substrate. We determined the kinetic parameters of three substrates of this type: human angiotensin II (AT) (DR VYIHPF) and the Hb(2–8) (LTAEEK A) and Hb(1–9) (MLTAEEK AA) peptides of the cattle hemoglobin -chain. The K m values for all the substrates (10–3 M) were one order of magnitude higher than those of the typical synthetic substrates of enteropeptidase or chimeric proteins with the –DDDDK– full-size linker (K m 10–4 M). The k cat values for AT and Hb(2–8) were also close and low (30 min–1). The general hydrolysis efficiency of such substrates is no more than 1% of the corresponding value for the typical peptide and protein substrates of the enteropeptidase. However, the elongation of Hb(2–8) peptide by one amino acid residue from both its N- and C-termini results in a dramatic increase in the catalytic efficiency of the hydrolysis: the k cat value for Hb(1–9) is 1510 min–1, which means that it is hydrolyzed only three times less effective than the chimeric protein with the full-size linker.  相似文献   

3.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 mol(CO2) m–2s–1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 mol(CO2) m–2s–1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 mol(CO2) m–2s–1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

4.
High molecular weight lectins (> 100 kDa) from seeds of the legumes Canavalia brasiliensis (CnBr), Cratylia floribunda (CFL), Phaseolus vulgaris (PHA) and Vatairea macrocarpa (VML), temporarily stimulate the respiration of Rhizobium tropici-CIAT899 and R. etli-CFN42. These stimulants were significant (P < 0.05) in bacterial suspensions (> 2.85 mg dry biomass ml–1), having at least 6200 molecules of lectins per bacteria. The VML (20 g ml–1), induced specific O2 demand of 2.3–2.5 M O2 min–1 mg dry biomass–1, in CFN42 and CIAT899, respectively. However, CnBr, CFL and PHA induced smaller demands of O2 (5×), in both strains. The order of affinities of the lectins was approximately VML > PHA > CFL > CnBr, with regard to respiratory stimuli in CIAT899 strain. The co-administration of 10 g VML ml–1 and 9.8 M galactose, in CIAT899 suspensions, reduced the respiratory stimuli significantly in relation to the treatment with VML alone. These respiratory stimuli, induced by the lectins, increase the significance of the interaction lectin × Rhizobium in terms of bacterial physiology. Its understanding could be important in relation to bacterial symbiotic behaviour.  相似文献   

5.
    
The limited proteolytic pattern of transducin,G t , and its purified subunits with chymotrypsin were analyzed and the cleavage sites on the t subunit were identified. The t subunit in the GTPS bound form was cleaved into a major 38 kD fragment, whereas t -GDP was progressively digested into 38, 23, 21, and 15 kD fragments. The t subunit was not very sensitive to proteolytic digestion with chymotrypsin. The t subunit was not cleaved and only a small portion of t was digested into several fragments. In order to determine which proteolytic fragment of t still contained the carboxyl terminal region, chymotrypsinization was carried out usingG t previously32P-labeled at Cys347 by petrussis toxin-catalyzed ADP-ribosylation. The32P-label was mainly associated with the t subunit and a 15 kD fragment. The 23 and 21 kD fragments were not32P-labeled. Analysis of amino terminal sequences of 38, 21, and 15 kD proteolytic bands allowed the identification of the major cleavage sites. Chymotrypsin had two cleavage sites in the amino terminal region of t , at Leu15 and Leu19. Chymotrypsin removed 15–19 amino acid residues from the amino terminus of t , generating two peptides (38 kD) which comigrates in gel electrophoresis. Chymotrypsin also cleaved at Trp207 in a conformation-dependent manner. Trp207 of t -GTPS was resistant to proteolysis but t -GDP and the 38 kD fragments of t -GDP produced the 23 and 21 kD fragments, respectively, and a 15 kD fragment containing the carboxyl terminus. This proves that the environment of Trp207 changes when GTP or GTPS is bound, leading to its inaccessibility to chymotrypsin.  相似文献   

6.
The nucleotide sequence of a plasmid-borne 3.9 kb XhoI-SmaI fragment comprising the 3-region of the nifM gene, the nifL and nifA genes and the 5-region of nifB gene of Enterobacter agglomerans was determined. The genes were identified by their homology to the corresponding nif genes of Klebsiella pneumoniae. A typical 54-dependent promoter and a consensus NtrC-binding motif were identified upstream of nifL. The predicted amino acid sequence of NifL showed close similarities to NifL of K. pneumoniae and Azotobacter vinelandii. However, no histidine residue was found to correspond to histidine-304 of A. vinelandii NifL, which had been proposed to be required for the repressor activity of NifL. The NifA sequence with a putative DNA binding motif (Q(X3) A (X3) G (X5)I) and an ATP binding site in the C-terminal and central domains, respectively, resembles that of other known NifA proteins. The function of the nifL and nifA genes was demonstrated in vivo using a binary plasmid system by their ability to activate a nifH promoter-lacZ fusion at different temperatures and concentrations of NH 4 + . Maximal promoter activity occurred at 25°C, and it appears that the sensitivity of NifA to elevated temperatures is independent of NifL. The expression of nifL inhibited promoter activity in the presence of NifA when the initial NH 4 + concentration in the medium exceeded 4 mM.Communicated by H. Böhme  相似文献   

7.
Summary From acetylene reduction assays over a 10-month period starting in April 1979, nodule activities averaged 18.78 (se 4.67) moles C2H4 g nodule dw–1 h–1 forAlnus rubra and 59.95 (se 12.14) moles C2H4 g nodule dw–1 h–1 forCytisus scorparius. Plant rates were 1.91 (se. 47) moles C2H4 plant–1 h–1 forA. rubra and 0.55 (se. 17) moles C2H4 plant–1 h–1 forC. Scoparius. Plant activity and total leaf N were strongly correlated with the dw of other plant parts, but nodule activity and percent leaf N were not. Plant and nodule activities were not associated with temperature, moisture stress, precipitation events or percent light for either species over the growing season nor for 54A. rubra sampled in mid-season 1979 on one replication. After 5 to 6 growing seasons, 14A. rubra on the same site ranged from 30 to 332 cm in height and showed strong correlation between nodule dw, leaf dw, plant size and total leaf N. Results from this study and others indicate logistic equations may be modified to predict the effect of adding a N2 fixing plant to a population of non N2 fixing trees.  相似文献   

8.
The preparation of a GM1-ganglioside (GM1) [14C]-labelled in the sialic acid residue is reported. This can be obtained by re-N-acetylation in the presence of [1-14C]-acetic anhydride, of a GM1 derivative de-N-acetylated specifically on the sialic acid residue by alkaline hydrolysis of GM1 with tetramethylammonium hydroxide. The radiolabelled GM1 is utilized to investigate the binding properties and the mode of interaction of GM1 with cultured fibroblasts. Three different forms of association (one serum-removable, one trypsin-removable and one trypsin-stable) have been recognized to occur in a way that depended on cell culture conditions (presence or absence of fetal calf serum), ganglioside concentration (from, 5×10–9 M to 10–4 M) and incubation time (up to 24 h). Some metabolic modifications of GM1 during the period of high cell viability were also investigated.Abbreviations GM1 GM1-ganglioside, II3NeuAc-GgOse4Cer - FCS fetal calf serum - EMEM Eaglés Minimum Essential Medium with Earlés salts - PBS Dulbecco phosphate buffered saline without calcium and magnesium  相似文献   

9.
The aluminium (Al) tolerance of 34 temperate legume species (143 genotypes, including 57 from Trifolium repens) was determined in 60 experiments over a 3 year period in a low ionic strength (2.7 × 10-3 M) solution culture. For each genotype, the relationship between solution Al3+ activity (M) and relative yield was determined and the Al3+ activity associated with a 50% reduction in yield (AlRY50) calculated. In addition, plant chemical concentrations were determined in at least one genotype from most species. For white clover, AlRY50 over all genotypes had an approximately normal distribution with mean of 1.31 M for the tops and 1.51 M for the roots, and a standard deviation of about 0.4. This suggested that Al tolerance had a polygenic inheritance. For the other species tested, AlRY50 ranged from 0.15 to 4.53 M in the tops and from 0.21 to 4.89 M in the roots. In the tops and roots, 37% and 26% respectively of the genotypes had an AlRY50 less than 1 M, including all species tested in the genera Melilotus and Medicago. Only 8% or 23% of the genotypes, based on the tops and roots respectively, had an AlRY50 greater than 2, including all genotypes in the species Lotus pedunculatus. Except for Lotus, there were no consistent differences between genera in plant chemical concentrations. In Lotus, concentrations of Ca, Zn, Mn and Cu in the tops and of all elements except B in the roots were lower than that of the other species. The AlRY50 of the species was not related to plant chemical concentrations in the absence of Al. Depending on the plant element, increasing solution Al concentrations had no significant effect on plant chemical concentrations for 56–94% of the species. When a significant effect did occur, increasing Al in solution generally decreased S and K concentrations and increased Mn, Zn, Cu Fe, B and Al concentrations in the tops and roots and decreased Ca concentrations in the tops. Plant P concentrations decreased in the tops but increased in the roots. Increasing Al in solution increase plant Al at the average rate of 44 g g-1 M -1 (range 20–87) in the tops and 333 g M -1 (range 162–616) in the roots.  相似文献   

10.
The extent of transfer of fixed N between N2-fixing and non-N2-fixing plant species is largely unknown in successional studies. In order to redress this deficiency at a locale intensively studied ecologically, leaf tissue samples were collected from actinorhizal N2-fixing (Alnus, Shepherdia, and Dryas) and two non-N2-fixing (Salix) woody species within research plots located along a chronosequence of deglaciated fjord in Glacier Bay National Park, Alaska. The tissue samples were analyzed for 15N content, and the resulting data analyzed for trends in plant tissue N. Among the non-N2-fixing Salix species, 15N values increased from the most recently deglaciated sites to converge with the temporally more-stable values for the symbiotic N2-fixing species on sites at about 40 years after deglaciation. The lower 15N values of sequestered N in plant tissues suggested that N derived from N2-fixing plants accounts for the major portion of N in associated plants up to 40 years after deglaciation. The 15N isotopic data also suggested that Shepherdia canadensis depends least on soil N, D. drummondii the most, and A. viridis ssp. sinuata somewhere between those two species. The presence of a sere dominated by dense thickets of A. viridis ssp. sinuata at the convergence of 15N values for the N2-fixing and non-N2-fixing species indicated that this species is most responsible for accumulation of fixed N in soil at Glacier Bay. This paper is dedicated to the memory of Steven J. Kohls who died prior to publication of this research.  相似文献   

11.
Canna indica L. is an upright perennial rhizomatous herb, and Schoenoplectus validus (Vahl) A. Löve and D. Löve is a tall, perennial, herbaceous sedge. The nutrient uptake kinetics of C. indica and S. validus were investigated using the modified depletion method after plants were grown for 4 weeks in simulated secondary-treated wastewater. The maximum uptake rate (Imax) and Michaelis–Menten constant (Km) were estimated by iterative curve fitting. The Imax for NH4N (623 μmol g−1 dry root weight h−1) was significantly higher than that for NO3N (338 μmol g−1 dry root weight h−1) in S. validus. In contrast, no difference was observed in C. indica. The Imax values for NO3N and NH4N were higher in S. validus than in C. indica. A significantly lower Km was detected for NO3N uptake in C. indica (385 μmol L−1) compared to that in S. validus (1908 μmol L−1). The Imax for PO4P did not differ between the plant species. The Km for PO4P was significantly higher in C. indica (157 μmol L−1) than in S. validus (60 μmol L−1). In conclusion, we found that S. validus preferred NH4N over NO3N, had greater capacity for N uptake and higher affinity for PO4P, but C. indica had greater affinity for NO3N. Nutrient uptake capacity is likely related to habitat preference, and is influenced by the structure of roots and rhizomes.  相似文献   

12.
George  T.S.  Gregory  P.J.  Robinson  J.S.  Buresh  R.J.  Jama  B. 《Plant and Soil》2002,246(1):53-63
A field experiment in western Kenya assessed whether the agroforestry species Tithonia diversifolia (Hemsley) A. Gray, Tephrosia vogelii Hook f., Crotalaria grahamiana Wight & Arn. and Sesbania sesban (L) Merill. had access to forms of soil P unavailable to maize, and the consequences of this for sustainable management of biomass transfer. The species were grown in rows at high planting density to ensure the soil under rows was thoroughly permeated by roots. Soil samples taken from beneath rows were compared to controls, which included a bulk soil monolith enclosed by iron sheets within the tithonia plot, continuous maize, and bare fallow plots. Three separate plant biomass samples and soil samples were taken at 6-month intervals, over a period of 18 months. The agroforestry species produced mainly leaf biomass in the first 6 months but stem growth dominated thereafter. Consequently, litterfall was greatest early in the experiment (0–6 months) and declined with continued growth. Soil pH increased by up to 1 unit (from pH 4.85) and available P increased by up to 38% (1 g P g–1) in agroforestry plots where biomass was conserved on the field. In contrast, in plots where biomass was removed, P availability decreased by up to 15%. Coincident with the declines in litterfall, pH decreased by up to 0.26 pH units, plant available P decreased by between 0.27 and 0.72 g g–1 and Po concentration decreased by between 8 and 35 g g–1 in the agroforestry plots. Declines in Po were related to phosphatase activity (R2=0.65, P<0.05), which was greater under agroforestry species (0.40–0.50 nmol MUB s–1 g–1) than maize (0.28 nmol MUB s–1 g–1) or the bare fallow (0.25 nmol MUB s–1 g–1). Management of tithonia for biomass transfer, decreased available soil P by 0.70 g g–1 and Po by 22.82 g g–1. In this study, tithonia acquired Po that was unavailable to maize. However, it is apparent that continuous cutting and removal of biomass would lead to rapid depletion of P stored in organic forms.  相似文献   

13.
Decomposition rates of Phragmites australis, Carex riparia, Nuphar luteum and Salvinia natans and benthic processes were measured from December 2003 to December 2004 in a shallow wetland (Paludi di Ostiglia, Northern Italy) by means of litter bags and intact cores incubations. Decay rate was highest for N. luteum (k = 0.0152 d−1), intermediate for S. natans (k = 0.0041 d−1) and similar for P. australis (k = 0.0027 d−1) and C. riparia (k = 0.0028 d−1).Benthic metabolism followed a seasonal pattern with summer peaks of O2 demand and TCO2, CH4 and NH4+ efflux whilst soluble reactive phosphorus (SRP) fluxes were negligible also under hypoxic conditions, indicating that P was mainly retained by sediment. The initial C:P ratio was similar in N. luteum and S. natans (170) and significantly lower than that of P. australis and C. riparia (360). During the detritus decay P was progressively lost by N. luteum and S. natans tissues, whereas, after an initial leaching, it was probably re-used during the microbial decomposition of the more refractory P. australis and C. riparia detritus. Nuphar luteum, P. australis and S. natans had comparable initial C:N mass ratio (15), significantly lower than that of C. riparia (26). The C:N ratio was rather constant for N. luteum (12.9 ± 1.5) and S. natans (14.6 ± 0.9), decreased slightly to below 20 for C. riparia and increased up to 30 for P. australis. Overall, differences among species were likely due to the recalcitrance of decomposing detritus, whilst process rates were controlled by limitation of microbial processes by nutrients and electron acceptor availability.  相似文献   

14.
Ascorbic acid oxidase (E.C.1.10.3.3) from the green zucchini squash (Cucurbita pepo medullosa) is a copper-containing glycoprotein which catalyzes the reaction:l-ascorbic acid +1/2 O2l-dehydroascorbic acid + H2O. The carbohydrate content of the purified plant glycoprotein amounted to 3% (w/w), and monosaccharide analysis revealed the carbohydrate moiety to be of theN-glycosidic type. The carbohydrate chains were released from the apoenzyme by digestion with PNGase-F immobilized on Sepharose 4B. After fractionation on Bio-Gel P-2 and purification on Mono-Q, the neutral oligosaccharide was investigated by 500-MHz1H-NMR spectroscopy. The primary structure of theN-linked carbohydrate chain was established to be: Abbreviations AAO ascorbic acid oxidase - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - Man mannose - Xyl xylose - GLC gas-liquid chromatography - FPLC fast protein liquid chromatography - NMR nuclear magnetic resonance - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

15.
Summary The apparent energy of activation (E a), Michaelis-Menten constant (K mfor oxaloacetate), V max/K mratios and specific activities of NADP+-malate dehydrogenase (NADP+-MDH; EC 1.1.1.82) were analyzed in plants of Barnyard grass from Québec (QUE) and Mississippi (MISS) acclimated to two thermoperiods 28/22°C, 21/15°C, and grown under two CO2 concentrations, 350 l l-1 and 675 l l-1. E avalues of NADP+-MDH extracted from QUE plants were significantly lower than those of MISS plants. K mvalues and V max/K mratios of the enzyme from both ecotypes were similar over the range of 10–30°C but reduced V max/K mratios were found for the enzyme of QUE plants at 30 and 40°C assays. MISS plants had higher enzyme activities when measured on a chlorophyll basis but this trend was reversed when activities were expressed per fresh weight leaf or per leaf surface area. Activities were significantly higher in plants of both populations acclimated to 22/28°C. CO2 enrichment did not modify appreciably the catalytic properties of NADP+-MDH and did not have a compensatory effect upon catalysis or enzyme activity under cool acclimatory conditions. NADP+-MDH activities were always in excess of the amount required to support observed rates of CO2 assimilation and these two parameters were significantly correlated. The enhanced photosynthetic performance of QUE plants under cold temperature conditions, as compared to that of MISS plants, cannot be attributed to kinetic differences of NADP+-malate dehydrogenase among these ecotypes.  相似文献   

16.
The effect of pH and transmembrane pH on the efficiency of the proton pump of the mitochondrialbc 1 complex bothin situ and in the reconstituted state was studied. In both cases the H+/e ratio for vectorial proton translocation by thebc 1 complex respiring at the steady state, under conditions in which the transmembrane pH difference (pH) represents the only component of the proton motive force (p), was significantly lower than that measured under level flow conditions. The latter amounts, at neutral pH, to 1 (2 including the scalar H+ release). In the reconstituted system steady-state pH was modulated by changing the intravesicular buffer as well as the intra/extra-liposomal pH. Under these conditions the H+/e ratio varied inversely with the pH. The data presented show that pH exerts a critical control on the proton pump of thebc 1 complex. Increasing the external pH above neutrality caused a decrease of the level flowH +/e ratio. This effect is explained in terms of proton/electron linkage inb cytochromes.  相似文献   

17.
Photosynthetic gas exchange characteristics of two common boreal forest mosses, Sphagnum (section acutifolia) and Pleurozium schreberi, were measured continuously during the time required for the moss to dry out from full hydration. Similar patterns of change in CO2 assimilation with variation in water content occurred for both species. The maximum rates of CO2 assimilation for Sphagnum (approx. 7 mol m–2 s–1) occurred at a water content of approximately 7 (fresh weight/dry weight) while for Pleurozium the maximum rate (approx. 2 mol m–2 s–1) occurred at a water content of approximately 6 (fresh weight/dry weight). Above and below these water contents CO2 assimilation declined. In both species total conductance to water vapour (expressed as a percentage of the maximum rates) remained nearly constant at a water content above 9 (fresh weight/dry weight), but below this level declined in a strong linear manner. Short-term, on-line 13CO2 and C18O16O discrimination varied substantially with changes in moss water content and associated changes in the ratio of chloroplast CO2 to ambient CO2 partial pressure. At full hydration (maximum water content) both Sphagnum and Pleurozium had similar values of 13CO2 discrimination (approx. 15). Discrimination against 13CO2 increased continuously with reductions in water content to a maximum of 27 in Sphagnum and 22 in Pleurozium. In a similar manner C18C16O discrimination increased from approximately 30 at full hydration in both species to a maximum of 150 in Sphagnum and 90 in Pleurozium, at low water content. The observed changes in C18O16O were strongly correlated to predictions of a mechanistic model of discrimination processes. Field measurements of moss water content suggested that photosynthetic gas exchange by moss in the understory of a black spruce forest was regularly limited by low water content.  相似文献   

18.
Factors influencing the rate of superoxide (O 2 - ) production by thylakoids were investigated to determine if increased production of the radical was related to injury induced by chilling at a moderate photon flux density (PFD). Plants used were Spinacia oleracea L., Cucumis sativus L. and Nerium oleander L. grown at either 200° C or 45° C. Superoxide production was determined by electron-spin-resonance spectroscopy of the (O 2 - )-dependent rate of oxidation of 2-ethyl-1-hydroxy-2,5,5-trimethyl-3-oxazolidine (OXANOH) to the corresponding oxazolidinoxyl radical, OXANO ·. For all plants, the steady-state rate of O 2 - production by thylakoids, incubated at 25° C and 350 mol photon · m–2 · s–1 (moderate PFD) with added ferredoxin and NADP, was between 7.5 and 12.5 mol · (mg chlorophyll)–1 · h–1. Incubation at 5° C and a moderate PFD, decreased the rate of O 2 - production 40% and 15% by thylakoids from S. oleracea and 20° C-grown N. oleander, chillinginsensitive plants, but increased the rate by 56% and 5% by thylakoids from C. sativus and 45° C-grown N. oleander, chilling-sensitive plants. For all plants, the addition of either ferredoxin or methyl viologen increased the rate of O 2 - -production at 25° C by 75–100%. With these electron acceptors, lowering the temperature to 5° C caused only a slight decrease in O 2 - production. In the absence of added electron acceptors, thylakoids produced O 2 - at a rate which was about 45% greater than that when ferredoxin and NADP were present. The addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea reduced O 2 - production under all conditions tested. The results show that the rate of O 2 - production increases in thylakoids when the rate of electron transfer to NADP is reduced. This could explain differences in the susceptibility of thylakoids from chilling-sensitive and chilling-insensitive plants to chilling at a moderate PFD, and is consistent with the proposal that O 2 - production is involved in the injury leading to the inhibition of photosynthesis induced under these conditions.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophen-yl)-1,1-dimethylurea - Fd ferredoxin - MV methyl viologen - 20°oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - OXANOH 2-ethyl-1-hydroxy-2,5,5-tri-methyl-3-oxazolidine - PFD photon flux density (photon fluence rate) - TEMED tetramethyl ethylenediamine We would like to thank R.T. Furbank, R.S.B.S., Australian National University, Canberra, A.C.T., and C.B. Osmond, now of Duke University, Durham, N.C., USA, for the gift of ferredoxin, R.A.J.H. was supported by a Commonwealth Postgraduate Research Award.  相似文献   

19.
Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (; F/Fm), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 mol m–2 s–1) than in the gap site (5 mol m–2 s–1), whereas that in N. heimii was lower in the open site (2 mol m–2 s–1) than in the gap site (4 mol m–2 s–1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plants regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.  相似文献   

20.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号