首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Survival and induction of the SOS system by 5-azacytidine, an analog of cytidine, were studied in Escherichia coli K-12. This compound did not produce any effect on the viability of dcm and dam dcm mutants. Furthermore, recA430 and lexA1 strains (both mutations interfere with LexA repressor cleavage but not recombination proficiency) were more resistant than the wild-type strain of E. coli K-12. In contrast, recBC and recA13 mutants were more sensitive to 5-azacytidine than the wild type. Transient exposure of E. coli to 5-azacytidine for 60 min induced both recA-dependent inhibition of cell division and induction of lambda prophage in Dcm+ strains but not in Dcm- mutants. Expression of both functions was dependent on recBC exonuclease. On the other hand, 5-azacytidine was unable to trigger the induction of umuCD and mucB genes and no amplification of RecA protein synthesis in either Dcm+ or Dcm- strains was observed. These last results are in agreement with previously reported data suggesting that there is a discrimination in the expression of the several SOS functions and that some SOS genes may be induced without amplification of RecA protein synthesis.  相似文献   

3.
In gamma-irradiated cells of Escherichia coli K-12 restriction alleviation of an unmodified phage lambda is only observed in AB1157 strain. No restriction alleviation by gamma-rays is registered in AB1157 mutants (rec A and ssb-1).  相似文献   

4.
Experiments on transformation of Escherichia coli K-12 cells by plasmids carrying RM systems with different recognition sites containing 5-methylcytosine have shown that the gene mcrB determines the function of restriction. The data obtained made it possible to believe that E. coli possesses no restriction system recognizing specifically cytosine methylated in position 4.  相似文献   

5.
6.
Summary We have analysed the mechanism of action of a ts mutation in E. coli, which has an effect on the expression of the restriction and modification phenotype. The frequencies of recombinants obtained in transduction experiments support the idea that the temperature sensitive mutation is located outside the hsd operon in the gene denoted hsd. X. Complementation experiments demonstrated the trans-dominant nature of the temperature sensitive mutation. The possible role of the hsd.X product in the formation of EcoR.K and EcoM.K complexes and their interaction with the recognition site on the DNA is discussed.  相似文献   

7.
Ozone was tested for its effect upon induction of lambda prophage in two different strains of Escherichia coli K-12. Based on the induction index and when compared to ultraviolet light, ozone appeared to be a weak, if any at all, inducer of the lytic cycle in E. coli. This is in agreement with other studies which have suggested that this agent is a weak inducer of the SOS functions.  相似文献   

8.
9.
The endonuclease activity of EcoKI is regulated by the ClpXP-dependent degradation of the subunit that is essential for restriction, but not modification. We monitored proteolysis in mutants blocked at different steps in the restriction pathway. Mutations that prevent DNA translocation render EcoKI refractory to proteolysis, whereas those that permit DNA translocation, but block endonuclease activity, do not. Although proteolysis alleviates restriction in a mutant that lacks modification activity, some restriction activity remains; our evidence indicates residual EcoKI associated with the membrane fraction. ClpXP protects the bacterial chromosome, but little effect was detected on unmodified foreign DNA within the cytoplasm of a restriction-proficient cell. The molecular basis for the distinction between unmodified resident and foreign DNA remains to be determined.  相似文献   

10.
To help understand how the tif-1 mutation of the recA gene of Escherichia coli confers adenine activability on the recA protein, we used the fact that cytidine plus guanosine inhibits induction of prophage lambda and cell filamentation in a tif-1 mutant, and that adenine reverses this inhibition. We varied the amount of adenine in agar plates containing a fixed amount of cytidine and scored for survivors of three different tif-dependent lethal induction processes. Much more adenine was required for cell killing when cytidine was present than when it was absent. Therefore adenine does not override cytidine inhibition, but instead appears to compete with it for a site of action which may be on the recA protein. The competition is not at the cell transport level. Our results lead to a model in which the tif form of the recA protein is an allosteric enzyme that binds both negative and positive modulators. By varying the adenine-cytidine ratio of the medium it is possible to control the degree of induction in a tif-1 cell. For the three different tif-dependent inductions studied here, least adenine was required for lambda induction and most for lethal filamentation, presumably reflecting requirements for different amounts of activated recA protein in each process. Varying the adenine-cytidine ratio revealed two stable intermediate stages in lambda induction, as well as a stage of colicin E1 induction in which the cells produced colicin without cell death. The rate of filament formation could be similarly controlled. Experiments with tif (ColE1, lambda) gave evidence of a competition between colicin repressor and lambda repressor for activated recA protein.  相似文献   

11.
Cells that have lost the ability to grow in culture could be defined operationally as either alive or dead depending on the method used to determine cell viability. As a consequence, the interpretation of the state of 'nonculturable' cells is often ambiguous. Escherichia coli K12 cells inactivated by UV-irradiation with a low (UV1) and a high (UV2) dose were used as a model of nonculturable cells. Cells inactivated by the UV1 dose lost 'culturability' but they were not lysed and maintained the capacity to respond to nutrient addition by protein synthesis and cell wall synthesis. The cells also retained both a high level of glucose transport and the capacity for metabolizing glucose. Moreover, during glucose incorporation, UV1-treated cells showed the capacity to respond to aeration conditions modifying their metabolic flux through the Embden-Meyerhof and pentose-phosphate pathways. However, nonculturable cells obtained by irradiation with the high UV2 dose showed several levels of metabolic imbalance and retained only residual metabolic activities. Nonculturable cells obtained by irradiation with UV1 and UV2 doses were diagnosed as active and inactive (dying) cells, respectively.  相似文献   

12.
The orf gene of bacteriophage lambda, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Delta(recC ptr recB recD)::P(tac) gam bet exo pae cI DeltarecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants.  相似文献   

13.
Summary When Escherichia coli is subjected to treatments that damage DNA or perturb DNA replication considerable cell filamentation occurs. It has been postulated that this phenomenon is associated with the presence of a division inhibitor induced coordinately with the SOS functions. The role of this induction would be to delay septation during DNA repair to prevent the formation of DNAless cells. In this communication, we present evidence for such a division inhibitor based on the properties of a division mutant which is hyperactive in the septation delay. Cells of this mutant filament extensively after a nutritional shift-up, have drastically reduced colony-forming abilities on a rich medium but not on a minimal medium following treatment with ultraviolet radiation and, are deficient in the lysogenization of phage lambda; phenotypes which are characteristic of but expressed to a much lower extent in another type of division mutant called lon. Cells harboring the division mutation plus either one of the lexA mutant alleles, spr-51 or tsl-1, are filamentous suggesting that they are permanently derepressed for division inhibition. These results are in agreement with models that assign the regulation of cell division to a division inhibitor which is regulated by the lexA repressor protein.  相似文献   

14.
15.
Summary When Escherichia coli K12() lysogens are infected with heteroimmune phage, which are unable to replicate, general recombination between phage and prophage depends on the bacterial recF gene. It has been shown that in E. coli K12 postconjugational recombination, the RecF pathway only works with full efficiency if exonuclease I is absent (Clark 1973). However, results presented in this paper indicate that under conditions in which replication is blocked, the recombination pathway dependant on the recF gene is fully active in producing viral recombinants even, if the phage is Red+, in the presence of exonuclease I. In contrast, removal of exonuclease and protein requires elimination of exonuclease I for an efficient RecF pathway. It is concluded that the Red system cooperates with the RecF pathway and that this cooperation involves overcoming the inhibitory effects of exonuclease I. In the absence of exonuclease, protein stimulates recF-dependent recombination but does not suffice to prevent the negative effect of exonuclease I. In the presence of protein, full efficiency of the RecF pathway can be obtained either via cooperation with exonuclease I or, if the viral exonuclease is defective, via inactivation of exonuclease I. Since activity of exonuclease appears necessary to overcome the inhibitory effects of exonuclease I, it is proposed here that exonuclease diverts material from the RecF pathway in a shunt reaction which allows completion of recF-initiated recombinational intermediates via a mechanism insensitive to exonuclease I.When replication is allowed, the Rec system produces viral recombinants mainly via a recF-independent mechanism. However, a major contribution of the RecF pathway to recombination is observed after removal of the Red system and exonuclease I.Obra social de la Caja de Ahorros de Valencia (Director: S. Grisolía)  相似文献   

16.
Recombination between short linear double-stranded DNA molecules and Escherichia coli chromosomes bearing the red genes of bacteriophage lambda in place of recBCD was tested in strains bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell; formation of Lac(-) chloramphenicol-resistant bacterial progeny was measured. Recombinant formation was found to be reduced in ruvAB and recQ strains. In this genetic background, mutations in recF, recO, and recR had large effects on both cell viability and on recombination. In these cases, deletion of the sulA gene improved viability and strain stability, without improving recombination ability. Expression of a gene(s) from the nin region of phage lambda partially complemented both the viability and recombination defects of the recF, recO, and recR mutants and the recombination defect of ruvC but not of ruvAB or recQ mutants.  相似文献   

17.
The rap gene of bacteriophage lambda was placed in the chromosome of an Escherichia coli K-12 strain in which the recBCD gene cluster had previously been replaced by the lambda red genes and in which the recG gene had been deleted. Recombination between linear double-stranded DNA molecules and the chromosome was tested in variants of the recGDelta red(+) rap(+) strain bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell. Replacement of wild-type lacZ with lacZ::cat was monitored by measuring the production of Lac-deficient chloramphenicol-resistant bacterial progeny. The results of these experiments indicated that the lambda rap gene could functionally substitute for the E. coli ruvC gene in Red-mediated recombination.  相似文献   

18.
Many recombination, DNA repair and DNA replication mutants have high basal levels of SOS expression as determined by a sulAp-lacZ reporter gene system on a population of cells. Two opposing models to explain how the SOS expression is distributed in these cells are: (i) the 'Uniform Expression Model (UEM)' where expression is evenly distributed in all cells or (ii) the 'Two Population Model (TPM)' where some cells are highly induced while others are not at all. To distinguish between these two models, a method to quantify SOS expression in individual bacterial cells was developed by fusing an SOS promoter (sulAp) to the green fluorescent protein (gfp) reporter gene and inserting it at attlambda on the Escherichia coli chromosome. It is shown that the fluorescence in sulAp-gfp cells is regulated by RecA and LexA. This system was then used to distinguish between the two models for several mutants. The patterns displayed by priA, dnaT, recG, uvrD, dam, ftsK, rnhA, polA and xerC mutants were explained best by the TPM while only lexA (def), lexA3 (ind-) and recA defective mutants were explained best by the UEM. These results are discussed in a context of how the processes of DNA replication and recombination may affect cells in a population differentially.  相似文献   

19.
Mutants affected in lamB, the structural gene for phage lambda receptor, are unable to utilize maltose when it is present at low concentrations (less than or equal 10 muM). During growth in a chemostat at limiting maltose concentrations, the lamB mutants tested were selected against in the presence of the wild-type strain. Transport studies demonstrate that most lamB mutants have deficient maltose transport capacities at low maltose concentrations. When antibodies against purified phage lambda receptor are added to a wild-type strain, transport of maltose at low concentrations is significantly reduced. These results strongly suggest that the phage lambda receptor molecule is involved in maltose transport.  相似文献   

20.
Summary The alleviation of K-specific DNA restriction after treatment of cells by UV or nalidixic acid has been studied in mutants with various alleles of recA and lexA and combinations of these alleles and with recB and recF mutations. The studies show that induction of restriction alleviation by UV or nalidixic acid is abolished in mutants in which the recA protein is defective (recA13, recA56), its protease activity is altered (recA430) or in which it cannot be efficiently activated (recA142). Thermoinduction of restriction alleviation was observed in tif mutant (recA441). In lexA amber mutants restriction alleviation is not constitutive but is still inducible. In a lexA3 mutant restriction alleviation is inducible by nalidixic acid provided that recA protein is overproduced as a result of a recA operator mutation. Induction by UV depends on the recF function and an unidentified function (Y) which is controlled by the lexA protein. The recBC enzyme is necessary for induction by UV or by nalidixic acid. Temperature shift experiments with a thermosensitive recB mutant indicate that the recBC enzyme functions in an early step during UV-induction. It is concluded that the damage-inducible function which alleviates restriction is similar to other damage inducible repair (SOS) functions in the dependence on activated recA protease for induction, but that it differs from these functions by the absence of a direct control through the lexA repressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号