首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

2.
A guanine nucleotide exchange factor (GEF), catalyzing the exchange of GDP bound to initiation factor eIF-2 for GTP, has been isolated from S3 HeLa cells as the eIF-2 X GEF complex and extensively purified by procedures originally developed for purification of GEF from rabbit reticulocytes. The HeLa cell factor resembles rabbit reticulocyte eIF-2 X GEF in polypeptide composition, catalytic activity, and inactivation by alpha-phosphorylated eIF-2.  相似文献   

3.
The mechanism for guanine nucleotide exchange with eukaryotic initiation factor-2 (eIF-2) from Drosophila melanogaster embryos was studied using the reaction eIF-2 X [3H]GDP + GDP (GTP) in equilibrium eIF-2 X GDP (GTP) + [3H]GDP. When highly purified eIF-2 is used the rate of nucleotide exchange is greatly reduced by Mg2+ and this reduction is overcome by the guanine-nucleotide-exchange factor (GEF) of rabbit reticulocytes. This GEF-dependent exchange is inhibited when Drosophila eIF-2 is either phosphorylated by the hemin-controlled inhibitor (HCI) of rabbit reticulocytes or treated with phosphatidylserine or a rabbit eIF-2 X phosphatidylserine complex. The Mg2+ impairment of guanine nucleotide exchange is less severe when highly purified eIF-2 is incubated at a higher temperature (37 degrees C) and is not observed at any temperature if partially purified eIF-2 is used instead of the highly purified factor. In the latter two cases the exchange is not inhibited by either phosphorylation with HCI or phospholipid treatment of Drosophila eIF-2, possibly suggesting that the observed exchange is not mediated by a GEF-like factor. Our data support two possible mechanisms for GDP/GTP exchange with Drosophila embryos eIF-2: a GEF-dependent exchange, similar to that described in rabbit reticulocytes, which may be regulated by phosphorylation of eIF-2, and a factor-independent exchange which appears to be insensitive to this type of control.  相似文献   

4.
The conversion of eIF-2.GDP to eIF-2.GTP by eIF-2B requires Met-tRNA(fMet).   总被引:1,自引:0,他引:1  
We have investigated why the recycling of eIF-2.GDP to eIF-2.GTP, mediated by the guanine nucleotide exchange factor eIF-2B, is rapid in rabbit reticulocyte lysate, reconstituted for optimal protein synthesis, but slow in an isolated reaction with purified eIF-2B. We have found that purified eIF-2B dissociates eIF-2.[3H]GDP as efficiently in the presence of GTP as it does in the presence of GDP provided Met-tRNA(fMet) is added. tRNA(fMet) is ineffective, and there is no Met-tRNA(fMet) requirement for exchange with GDP. Exchange of eIF-2 bound GDP for GTP is completely dependent upon Met-tRNA(fMet) in the presence of ATP, suggesting that under physiological conditions efficient recycling of eIF-2.GDP to eIF-2.GTP requires conversion of the latter, a relatively unstable complex, to a more stable Met-tRNA(fMet).eIF-2.GTP complex.  相似文献   

5.
Interactions of eukaryotic 5-dimethylaminonaphthalene-1-sulfonyl-initiation factor 2 (eIF-2) from rabbit reticulocytes and the guanine nucleotide exchange factor ( GEF ), Met-tRNAf, GTP, and GDP were monitored by changes in fluorescence anisotropy and radioactive filtration assays. At 1 mM Mg2+, radioactive filtration assays demonstrate that GEF is necessary for nucleotide exchange. We did not observe a GDP dependence in the association reaction of eIF-2 X GEF for GDP concentrations from 0.01 to 20 microM. This is in disagreement with the model: eIF-2 X GDP + GEF in equilibrium eIF-2 X GEF + GDP. The addition of GTP caused a decrease in fluorescence anisotropy which is interpreted as a dissociation of eIF-2 X GEF . We propose an asymmetrical model of ternary complex (eIF-2 X GTP X Met-tRNAf) formation where 1) GDP does not displace GEF and 2) GTP replaces GEF and presumably GDP. For reticulocyte eIF-2, phosphorylation of the alpha subunit greatly inhibits protein synthesis. This inhibition derives neither from failure of GEF to bind to eIF-2(alpha P) nor from greatly enhanced binding of GEF . The inhibition results from the requirement of very high levels of GTP (100 microM) to dissociate the eIF-2(alpha P) X GEF complex.  相似文献   

6.
The interaction of Escherichia coli elongation factor Tu (EF-Tu) with elongation factor Ts (EF-Ts) and guanine nucleotides was studied by the stopped-flow technique, monitoring the fluorescence of tryptophan 184 in EF-Tu or of the mant group attached to the guanine nucleotide. Rate constants of all association and dissociation reactions among EF-Tu, EF-Ts, GDP, and GTP were determined. EF-Ts enhances the dissociation of GDP and GTP from EF-Tu by factors of 6 x 10(4) and 3 x 10(3), respectively. The loss of Mg(2+) alone, without EF-Ts, accounts for a 150-300-fold acceleration of GDP dissociation from EF-Tu.GDP, suggesting that the disruption of the Mg(2+) binding site alone does not explain the EF-Ts effect. Dissociation of EF-Ts from the ternary complexes with EF-Tu and GDP/GTP is 10(3)-10(4) times faster than from the binary complex EF-Tu.EF-Ts, indicating different structures and/or interactions of the factors in the binary and ternary complexes. Rate constants of EF-Ts binding to EF-Tu in the free or nucleotide-bound form or of GDP/GTP binding to the EF-Tu.EF-Ts complex range from 0.6 x 10(7) to 6 x 10(7) M(-1) s(-1). At in vivo concentrations of nucleotides and factors, the overall exchange rate, as calculated from the elemental rate constants, is 30 s(-1), which is compatible with the rate of protein synthesis in the cell.  相似文献   

7.
We have isolated from the high salt wash of rabbit reticulocyte ribosomes two forms of the polypeptide chain initiation factor 2 (eIF-2) which differ with respect to their beta-subunit, GDP content, and sensitivity to Mg2+ in ternary (eIF-2 X GTP X Met-tRNAf) and binary (eIF-2 X GDP) complex formation. The form of eIF-2 eluting first from a cation exchange (Mono S, Pharmacia) column has a beta-subunit of lower molecular weight (eIF-2(beta L] and a more acidic pI value than the form eluting at a higher salt concentration (eIF-2(beta H]. These two forms of eIF-2 beta-polypeptides are also detected in reticulocyte lysates when the proteins are resolved by two-dimensional isoelectric focusing-dodecyl sulfate polyacrylamide gel electrophoresis followed by immunoblotting. The peptide mapping of the isolated beta-subunits after limited proteolysis by papain, pancreatic protease, alpha-chymotrypsin, or Staphylococcus aureus V8 protease further demonstrates that the two forms of beta-subunits are not the product of a non-specific proteolytic action that occurred during the purification procedure, but rather reflects the existence in vivo of both forms of eIF-2. The GDP content of eIF-2(beta L) and eIF-2(beta H) is approximately 0.85 and 0.22 mol of GDP/mol of eIF-2, respectively. The KD for GDP of eIF-2(beta L) was lower (2.2 X 10(-9) M) than that of eIF-2(beta H) (6.0 X 10(-8) M). In the presence of 1 mM Mg2+, the activities of eIF-2(beta L) and eIF-2(beta H) in forming a binary and a ternary complex are inhibited 90 and 25%, respectively. The extent of Mg2+ inhibition and its reversal by the guanine nucleotide exchange factor is directly proportional to the amount of GDP bound to eIF-2. No inhibition by Mg2+ is observed when eIF-2-bound GDP is removed by alkaline phosphatase. In the presence of the guanine nucleotide exchange factor, both forms of eIF-2 are equally active in ternary complex formation, and the complex formed is quantitatively transferred to 40 S ribosomal subunits.  相似文献   

8.
Two polypeptide chain initiation factors, eukaryotic initiation factor 2 (eIF-2) and guanine nucleotide exchange factor (GEF), were isolated from rat liver. Two forms of eIF-2 were identified, one contained three subunits (alpha, beta, and gamma), and the other contained only the alpha- and gamma-subunits. The three-subunit form was similar to eIF-2 from rabbit reticulocytes with respect to the sedimentation coefficient, Stokes radius, molecular weight of the alpha- and gamma-subunits, ability to restore protein synthesis in hemin-deficient reticulocyte lysate, and immunological cross-reactivity of the alpha-subunits using antibodies against liver eIF-2. In contrast, the beta-subunits of the liver and reticulocyte factors were distinct; they had different molecular weights, and antibodies against rat liver eIF-2 beta did not recognize the beta-subunit of the reticulocyte factor. Furthermore, the GDP dissociation constant for reticulocyte eIF-2 was more than twice that of the liver factor. GEF from rat liver reversed GDP inhibition of the ternary complex assay and catalyzed the exchange of eIF-2-bound GDP for free GDP or GTP, characteristics ascribed to the corresponding protein from rabbit reticulocytes. However, its subunit composition and molecular weight were different from those reported for reticulocyte GEF. The T1/2 for GDP exchange mediated by GEF was about 5-fold slower with two-subunit than with three-subunit eIF-2. In addition, the KD for GDP was lower for two-subunit than for three-subunit eIF-2 when GEF was present. Taken together, these data demonstrate species-associated variability in the beta-subunit of eIF-2 and suggest a crucial role for the beta-subunit in the functional interaction of eIF-2 and GEF.  相似文献   

9.
Published data have been analysed to determine the rate constants governing the exchange of GDP in the complex of the eukaryotic protein synthesis initiation factor eIF-2 with GDP, catalysed by eIF-2B. The interaction of eIF-2B with eIF-2.GDP appears to include a very high 'on' rate constant of up to 4 x 10(8) M-1 sec-1 - a value very similar to that found by others for the interaction of the bacterial elongation factors Tu and Ts. Assuming a substituted enzyme mechanism that leads to displacement of GDP and ultimately to formation of a quaternary complex eIF-2B.eIF-2.GTP.methionyl-tRNA, minimum rate constants have been estimated for the additional reactions assuming in vivo rates of protein synthesis. Rate constants for the other reactions are unexceptional.  相似文献   

10.
Polypeptide chain initiation in mammalian systems is regulated at the level of the guanine nucleotide exchange factor (GEF). This multisubunit protein catalyzes the exchange of GDP bound to eukaryotic initiation factor 2 (eIF-2) for GTP. Although various models have been proposed for its mode of action, the exact sequence of events involved in nucleotide exchange is still uncertain. We have studied this reaction by three different experimental techniques: (a) membrane filtration assays to measure the release of [3H]GDP from the eIF-2.[3H]GDP binary complex, (b) changes in the steady-state polarization of fluorescamine-GDP during the nucleotide exchange reaction, and (c) sucrose gradient analysis of the total reaction. The results obtained do not support the reaction as written: eIF-2.GDP + GEF in equilibrium eIF-2.GEF + GDP. The addition of GEF alone does not result in the displacement of eIF-2-bound GDP. The release of bound GDP is dependent on the presence of both GTP and GEF, and this argues against the possibility of a substituted enzyme (ping-pong) mechanism for the guanine nucleotide exchange reaction. An important finding of the present study is the observation that GTP binds to GEF. The Kd value of 4 microM for GTP was estimated (a) by the extent of quenching of tryptophan fluorescence of GEF in the presence of GTP and (b) by the binding of [3H]GTP to GEF as measured on nitrocellulose membranes. The GEF-dependent release of eIF-2-bound GDP was studied at several constant concentrations of one substrate (GTP or eIF-2.GDP) while varying the second substrate concentration, and the results were then plotted according to the Lineweaver-Burk method. Taken together, the results of GTP and eIF-2.GDP binding to GEF and the pattern of the double-reciprocal plots strongly suggest that the guanine nucleotide exchange reaction follows a sequential mechanism.  相似文献   

11.
eIF-2B and the exchange of guanine nucleotides bound to eIF-2   总被引:1,自引:0,他引:1  
Available data for the formation of the ternary complex eIF-2 X GTP X methionyl-tRNAi involved in eukaryotic initiation and of the inhibition of ternary complex formation by GDP have been examined with a view to determining the mechanism by which eIF-2B facilitates nucleotide exchange. Two mechanisms have been considered--first a displacement reaction in which eIF-2B displaces GDP and GTP in a manner analogous to a "ping-pong" enzyme mechanism, and secondly the possibility that binding of eIF-2B to eIF-2 nucleotide complexes enhances the rate of nucleotide exchange without itself inducing nucleotide displacement. Comparison has been made between the properties of eIF-2 and eIF-2B and of the bacterial elongation factors Tu and Ts. It seems most probable that, as previously suggested by others for Ts, eIF-2B effectively catalyses an exchange reaction through a "ping-pong" type mechanism. Possible explanations of data suggesting otherwise are put forward. Both eIF-2 and bacterial Tu are complex allosteric proteins subject to a variety of influences which in the case of eIF-2 include phosphorylation of the alpha subunit. This phosphorylation appears to change the equilibria in the reaction mechanism such that the transferred entity (eIF-2) becomes firmly bound to the catalyst (eIF-2B). Minimum rate constants for the formation of eIF-2 X eIF-2B from eIF-2 X GDP and eIF-2 X GTP and reverse reactions are derived. These values suggest that the initiation factors are likely to have to operate in a restricted environment if rates of protein synthesis seen in vivo are to be sustained.  相似文献   

12.
A factor has been isolated from wheat germ that enhances the ability of initiation factor 2 (eIF-2) to form a ternary complex with GTP and Met-tRNAf and enhances the binding of Met-tRNAf to 40 s ribosomal subunits. This factor, designated Co-eIF2 beta, is a monomeric protein with a molecular weight of approximately 83,000. Wheat germ eIF-2 forms a stable binary complex with GDP but not with GTP. Co-eIF-2 beta enhances the formation of an eIF-2 . GDP complex, but does not enable eIF-2 to form a stable complex with GTP.  相似文献   

13.
In contrast to reticulocyte polypeptide chain initiation factor 2 (eIF-2), the Artemia factor retains activity in the presence of Mg2+ or after phosphorylation of its alpha-subunit by rabbit reticulocyte heme-controlled repressor (Mehta, H. B., Woodley, C. L., and Wahba, A. J. (1983) J. Biol. Chem. 258, 3438-3441). Furthermore, we have so far been unable to demonstrate a requirement for a GDP/GTP nucleotide exchange factor with Artemia eIF-2. In order to explain these differences we compared the structure of eIF-2 from Artemia and rabbit reticulocytes by using one- and two-dimensional phosphopeptide and iodopeptide maps. Partial trypsin digestion of the alpha-subunit of Artemia eIF-2 after phosphorylation by the heme-controlled repressor generates a 4000 Mr phosphopeptide. Upon extensive trypsin digestion, the two-dimensional phosphopeptide maps of the alpha-subunits for the reticulocyte and Artemia factors are indistinguishable, whereas the iodopeptide maps are different. In addition, immunoblotting indicates that there is no consistent cross-reactivity of the reticulocyte subunits with antibodies prepared in rabbits against the Artemia eIF-2 subunits. A casein kinase II activity was isolated from Artemia embryos that phosphorylates the beta-subunit of reticulocyte eIF-2, but specifically phosphorylates the alpha-subunit of eIF-2 preparations from several non-mammalian sources, including Artemia, yeast, and wheat germ embryos. Since this kinase phosphorylates a site distinct from that recognized by the heme-controlled repressor, and this phosphorylation does not alter the ability of Artemia eIF-2 to undergo nucleotide exchange, caution must be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in non-mammalian cells.  相似文献   

14.
Protein synthesis in sea urchin eggs is stimulated dramatically upon fertilization. We previously demonstrated that this stimulation is primarily due to an increase in the rate of polypeptide chain initiation which in turn may be regulated at the level of recycling of eukaryotic initiation factor 2 (eIF-2) (Colin, A. M., Brown, B. D., Dholakia, J. N., Woodley, C. L., Wahba, A. J., and Hille, M. B. (1987) Dev. Biol. 123, 354-363). We have now purified eIF-2 from sea urchin Strongylocentrotus purpuratus blastulae to apparent homogeneity by chromatography on DEAE-cellulose, phosphocellulose, Mono Q, Mono P, and Mono S columns. The factor, which differs from mammalian eIF-2, is composed of three non-identical subunits with apparent molecular weights of 40,000-alpha; 47,000-beta, and 58,000-gamma as estimated by sodium dodecyl-polyacrylamide gel electrophoresis. Antibodies raised against rabbit reticulocyte eIF-2 do not cross-react with sea urchin eIF-2. The binding of Met-tRNA(f) to sea urchin eIF-2 is totally dependent on GTP. A 4-fold stimulation in the rate of protein synthesis in unfertilized sea urchin egg extracts is observed by the addition of 1 micrograms of purified eIF-2. The factor also binds GDP to form a binary (eIF-2.GDP) complex which is stable in the presence of Mg2+. GDP binding to sea urchin eIF-2 inhibits ternary (eIF-2-GTP.[35S]Met-tRNA(f) complex formation. The rabbit reticulocyte guanine nucleotide exchange factor (GEF) catalyzes the exchange of GDP bound to sea urchin eIF-2 for GTP and stimulates ternary complex formation. The requirement of GEF for the recycling of eIF-2 suggests that protein synthesis in sea urchins is similar to that in mammalian systems and may also be regulated at the level of GEF activity. The reticulocyte heme-controlled repressor phosphorylates the alpha-subunit of eIF-2 from both sea urchins and rabbit reticulocytes. However, casein kinase II which phosphorylates the beta-subunit of the reticulocyte factor specifically phosphorylates the alpha-subunit of sea urchin eIF-2. In this respect, the sea urchin factor is similar to eIF-2 isolated from other nonmammalian sources. Since both heme controlled repressor and casein kinase II phosphorylate the alpha-subunit of sea urchin eIF-2 caution should be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in sea urchins.  相似文献   

15.
Formation of the ternary complex Met-tRNAi X eukaryotic initiation factor (eIF) 2 X GTP from eIF-2 X GDP requires exchange of GDP for GTP. However, at physiological Mg2+ concentrations, GDP is released from eIF-2 exceedingly slowly (Clemens, M.J., Pain, V.M., Wong, S.T., and Henshaw, E.C. (1982) Nature (Lond.) 296, 93-95). However, GDP is released rapidly from impure eIF-2 preparations, indicating the presence of a GDP/GTP exchange factor. We have now purified this factor from Ehrlich cells and refer to it as GEF. CM-Sephadex chromatography of ribosomal salt wash separated two peaks of eIF-2 activity. GEF was found in association with eIF-2 in the first peak and co-purified with eIF-2 under low salt conditions. It was separated from eIF-2 in high salt buffers and further purified on hydroxylapatite and phosphocellulose. Gel electrophoresis of our purest preparations showed major bands at 85, 67, 52, 37, 27, and 21 kDa. Purified GEF increased the rate of exchange of [32P] GDP for unlabeled GDP 25-fold but did not function with phosphorylated eIF-2 (alpha subunit). The factor also stimulated markedly the rate of ternary complex formation using eIF-2 X GDP as substrate with GTP and Met-tRNAi but not using phosphorylated eIF-2 X GDP as substrate. eIF-2 is released from the 80 S initiation complex with hydrolysis of GTP. If eIF-2 X GDP is actually the complex released, then GEF is absolutely required for eIF-2 to cycle and it is therefore a new eukaryotic initiation factor. Furthermore, the inability of GEF to utilize eIF-2 (alpha P) X GDP explains how phosphorylation of eIF-2 can inhibit polypeptide chain initiation.  相似文献   

16.
The phosphorylation of eukaryotic initiation factor (eIF) 2 alpha that occurs when rabbit reticulocyte lysate is incubated in the absence of hemin or with poly(I.C) causes inhibition of polypeptide chain initiation by preventing a separate factor (termed RF) from promoting the exchange of GTP for GDP on eIF-2. When lysate was incubated in the presence of hemin and [14C] eIF-2 or [alpha-32P]GTP, we observed binding of eIF-2 and GDP or GTP to 60 S ribosomal subunits that was slightly greater than that bound to 40 S subunits and little binding to 80 S ribosomes. When incubation was in the absence of hemin or in the presence of hemin plus 0.1 microgram/ml poly(I.C), eIF-2 and GDP binding to 60 S subunits was increased 1.5- to 2-fold, that bound to 80 S ribosomes was almost as great as that bound to 60 S subunits, and that bound to 40 S subunits was unchanged. Our data indicate that about 40% of the eIF-2 that becomes bound to 60 S subunits and 80 S ribosomes in the absence of hemin or with poly(I.C) is eIF-2(alpha-P) and suggest that the eIF-2 and GDP bound is probably in the form of a binary complex. The accumulation of eIF-2.GDP on 60 S subunits occurs before binding of Met-tRNAf to 40 S subunits becomes reduced and before protein synthesis becomes inhibited. The rate of turnover of GDP (presumably eIF-2.GDP) on 60 S subunits and 80 S ribosomes in the absence of hemin is reduced to less than 10% the control rate, because the dissociation of eIF-2.GDP is inhibited. Additional RF increases the turnover of eIF-2.GDP on 60 S subunits and 80 S ribosomes to near the control rate by promoting dissociation of eIF-2.GDP but not eIF-2(alpha-P).GDP. Our findings suggest that eIF-2.GTP binding to and eIF-2.GDP release from 60 S subunits may normally occur and serve to promote subunit joining. The phosphorylation of eIF-2 alpha inhibits polypeptide chain initiation by preventing dissociation of eIF-2.GDP from either free 60 S subunits (thus inhibiting subunit joining directly) or the 60 S subunit component of an 80 S initiation complex (thereby blocking elongation and resulting in the dissociation of the 80 S complex).  相似文献   

17.
Catalytic properties of the elongation factors from Thermus thermophilus HB8 have been studied and compared with those of the factors from Escherichia coli. 1. The formation of a ternary guanine-nucleotide . EF-Tu . EF-Ts complex was demonstrated by gel filtration of the T. thermophilus EF-Tu . EF-Ts complex on a Sephadex G-150 column equilibrated with guanine nucleotide. The occurrence of this type of complex has not yet been proved with the factors from E. coli. 2. The dissociation constants for the complexes of T. thermophilus EF-Tu . EF-Ts with GDP and GTP were 6.1 x 10(-7) M and 1.9 x 10(-6) M respectively. On the other hand, T. thermophilus EF-Tu interacted with GDP and GTP with dissociation constants of 1.1 x 10(-9) M and 5.8 x 10(-8) M respectively. This suggests that the association of EF-Ts with EF-Tu lowered the affinity of EF-Tu for GDP by a factor of about 600 and facilitated the nucleotide exchange reaction. 3. Although the T. thermophilus EF-Tu . EF-Ts complex hardly dissociates into EF-Tu and EF-Ts, a rapid exchange was observed between free EF-Ts and the EF-Tu . EF-Ts complex using 3H-labelled EF-Ts. The exchange reaction was independent on the presence or absence of guanine nucleotides. 4. Based on the above findings, an improved reaction mechanism for the regeneration of EF-Tu . GTP from EF-Tu . GDP is proposed. 5. Studies on the functional interchangeability of EF-Tu and EF-Ts between T. thermophilus and E. coli has revealed that the factors function much more efficiently in the homologous than in the heterologous combination. 6. T. thermophilus EF-Ts could bind E. coli EF-Tu to form an EF-Tu (E. coli) . EF-Ts (T. thermophilus hybrid complex. The complex was found to exist in a dimeric form indicating that the property to form a dimer is attributable to T. thermophilus EF-Ts. On the other hand, no stable complex between E. coli EF-Ts and T. thermophilus EF-Tu has been isolated. 7. The uncoupled GTPase activity of T. thermophilus EF-G was much lower than that of E. coli EF-G. T. thermophilus EF-G formed a relatively stable binary EF-G . GDP complex, which could be isolated on a nitrocellulose membrane filter. The Kd values for EF-G . GDP and EF-G . GTP were 6.7 x 10(-7) M and 1.2 x 10(-5) M respectively. The ternary T. thermophilus EF-G . GDP . ribosome complex was again very stable and could be isolated in the absence of fusidic acid. The stability of the latter complex is probably the cause of the low uncoupled GTPase activity of T. thermophilus EF-G.  相似文献   

18.
A cDNA clone encoding a small GTP binding protein (Brho) was isolated from an embryonic cDNA library of Bombyx mori that encoded a polypeptide with 202 amino acids sharing 60-80% similarity with the Rho1 family of GTP binding proteins. The effector site and one of the guanine nucleotide binding sites differed from other members of the Rho family. To characterize the biochemical properties of Brho, the clone was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. The recombinant protein was purified to homogeneity with glutathione S-Sepharose. The fusion protein bound [(35)S] GTPgammaS and [(3)H] GDP with association constants of 11x10(6) M(-1) and 6.2x10(6) M(-1), respectively. The binding of [(35)S] GTPgammaS was inhibited by GTP and GDP, but by no other nucleotides. The calculated GTP-hydrolysis activity was 89.6 m mol/min/mol of Brho. Bound [(35)S] GTPgammaS and [(3)H] GDP were exchanged with GTPgammaS most efficiently in the presence of 6 mM MgCl(2). These results suggest that Brho has a higher affinity for GTP than GDP, converts from the GTP-bound state into the GDP-bound state by intrinsic GTP hydrolytic activity, and returns to the GTP-bound state with the exchange of GDP with GTP. Arch.  相似文献   

19.
The Caulobacter crescentus CgtA protein is a member of the Obg-GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA specifically bound GTP and GDP but not GMP or ATP. CgtA bound GTP and GDP with moderate affinity at 30 degrees C and displayed equilibrium binding constants of 1.2 and 0.5 microM, respectively, in the presence of Mg(2+). In the absence of Mg(2+), the affinity of CgtA for GTP and GDP was reduced 59- and 6-fold, respectively. N-Methyl-3'-O-anthranoyl (mant)-guanine nucleotide analogs were used to quantify GDP and GTP exchange. Spontaneous dissociation of both GDP and GTP in the presence of 5 to 12 mM Mg(2+) was extremely rapid (k(d) = 1.4 and 1.5 s(-1), respectively), 10(3)- to 10(5)-fold faster than that of the well-characterized eukaryotic Ras-like GTP-binding proteins. The dissociation rate constant of GDP increased sevenfold in the absence of Mg(2+). Finally, there was a low inherent GTPase activity with a single-turnover rate constant of 5.0 x 10(-4) s(-1) corresponding to a half-life of hydrolysis of 23 min. These data clearly demonstrate that the guanine nucleotide binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. Furthermore, these data are consistent with a model whereby the nucleotide occupancy of CgtA is controlled by the intracellular levels of guanine nucleotides.  相似文献   

20.
A potent guanosine diphosphatase activity that hydrolyzes GDP to 5'-GMP + Pi has been isolated and purified from the salt wash proteins of calf liver microsomes. The purified enzyme, a monomeric protein of approximate Mr 46,000, possesses nucleotide substrate specificity since, among the nucleoside diphosphates and triphosphates tested, only GDP and UDP are hydrolyzed by the enzyme. The relative affinity of the enzyme for GDP is, however, much higher than for UDP. The effect of the enzyme on the binary complex formed between eukaryotic initiation factor 2 (eIF-2) and GDP has also been investigated. The enzyme neither hydrolyzes GDP bound to eIF-2 nor catalyzes the exchange of eIF-2-bound GDP with GTP even in the presence of Met-tRNAf. The enzyme, therefore, is presumably not involved in recycling of eIF-2 in eukaryotic polypeptide chain initiation reaction. The possible biological function of the enzyme in maintaining the cellular pool of GTP-GDP is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号