首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-based microarrays are among the novel class of rapidly emerging proteomic technologies that will allow us to efficiently perform global proteome analysis. However, the process of designing adequate protein microarrays is a major inherent problem. In this study, we have evaluated a protein microarray platform based on nonpurified affinity-tagged single-chain (sc) Fv antibody fragments to generate proof-of-principle and to demonstrate the specificity and sensitivity of the array design. To this end, we used our human recombinant scFv antibody library genetically constructed around one framework, the n-CoDeR library containing 2 x 10(10) clones, as a source for our probes. The probes were immobilized via engineered C-terminal affinity tags, his- or myc-tags, to either Ni(2+)-coated slides or anti-tag antibody coated substrates. The results showed that highly functional microarrays were generated and that nonpurified scFvs readily could be applied as probes. Specific and sensitive microarrays were obtained, providing a limit of detection in the pM to fM range, using fluorescence as the mode of detection. Further, the results showed that spotting the analyte on top of the arrayed probes, instead of incubating the array with large sample volumes (333 pL vs. 40 microL), could reduce the amount of analyte required 4000 times, from 1200 attomole to 300 zeptomole. Finally, we showed that a highly complex proteome, such as human sera containing several thousand different proteins, could be directly fluorescently labeled and successfully analyzed without compromising the specificity and sensitivity of the antibody microarrays. This is a prerequisite for the design of high-density antibody arrays applied in high-throughput proteomics.  相似文献   

2.
We have developed a technique to establish catalogues of protein products of arrayed cDNA clones identified by DNA hybridisation or sequencing. A human fetal brain cDNA library was directionally cloned in a bacterial vector that allows IPTG-inducible expression of His6-tagged fusion proteins. Using robot technology, the library was arrayed in microtitre plates and gridded onto high-density in situ filters. A monoclonal antibody recognising the N-terminal RGSH6sequence of expressed proteins (RGS.His antibody, Qiagen) detected 20% of the library as putative expression clones. Two example genes, GAPDH and HSP90alpha, were identified on high-density filters using DNA probes and antibodies against their proteins.  相似文献   

3.
A new and flexible technology for high throughput analysis of antibody specificity and affinity is presented. The method is based on microfluidics and takes advantage of compact disks (CDs) in which the centrifugal force moves fluids through microstructures containing immobilized metal affinity chromatography columns. Analyses are performed as a sandwich assay, where antigen is captured to the column via a genetically attached His6-tag. The antibodies to be analyzed are applied onto the columns. Thereafter, fluorescently labeled secondary antibodies recognize the bound primary antibodies, and detection is carried out by laser-induced fluorescence. The CDs contain 104 microstructures enabling analysis of antibodies against more than 100 different proteins using a single CD. Importantly, through the three-dimensional visualization of the binding patterns in a column it is possible to separate high affinity from low affinity binding. The method presented here is shown to be very sensitive, flexible and reproducible.  相似文献   

4.
Peptide microarrays displaying biologically active small synthetic peptides in a high-density format provide an attractive technology to probe complex samples for the presence and/or function of protein analytes. We present a new approach for manufacturing functional peptide microarrays for molecular immune diagnostics. Our method relies on the efficiency of site-specific solution-phase coupling of biotinylated synthetic peptides to NeutrAvidin (NA) and localized microdispensing of peptide-NA-complexes onto activated glass surfaces. Antibodies are captured in a sandwich manner between surface immobilized peptide probes and fluorescence-labeled secondary antibodies. Our work includes a total of 54 peptides derived from immunodominant linear epitopes of the T7 phage capsid protein, Herpes simplex virus glycoprotein D, c-myc protein, and three domains of the Human coronavirus polymerase polyprotein and their cognate mAbs. By using spacer molecules of different type and length for NA-mediated peptide presentation, we show that the incorporation of a minimum spacer length is imperative for antibody binding, whereas the peptide immobilization direction has only secondary importance for antibody affinity and binding. We further demonstrate that the peptide array is capable of detecting low-picomolar concentrations of mAbs in buffered solutions and diluted human serum with high specificity.  相似文献   

5.
Quantitative protein profiling using antibody arrays   总被引:4,自引:0,他引:4  
Barry R  Soloviev M 《Proteomics》2004,4(12):3717-3726
Traditional approaches to microarrays rely on direct binding assays where the extent of hybridisation and the signal detected are a measure of the analyte concentration in the experimental sample. This approach, directly imported from the nucleic acid field, may fail if applied to antibody-antigen interactions due to the shortage of characterised antibodies, the significant heterogeneity of antibody affinities, their dependence on the extent of protein modification during labelling and the inherent antibody cross-reactivity. These problems can potentially limit the multiplexing capabilities of protein affinity assays and in many cases rule out quantitative protein profiling using antibody microarrays. A number of approaches aimed at achieving quantitative protein profiling in a multiplex format have been reported recently. Of those reported, the three most promising routes include signal amplification, multicolour detection and competitive displacement approaches to multiplex affinity assays. One in particular, competitive displacement, also overcomes the problems associated with quantitation of affinity interactions and provides the most generic approach to highly parallel affinity assays, including antibody arrays.  相似文献   

6.
The molecular forces that bind antibody to antigen have long fascinated chemists. The use of synthetic haptens to study immunochemical phenomena can be traced back to the classic work of Karl Lansteiner. His utilization of small-molecule-protein conjugates first demonstrated the shape-selective nature of antibody binding. Later work by Linus Pauling and David Pressman employed multivalent, synthetic ligands to establish the bivalent nature of antibodies and explain the nature of immunoprecipitation. Fluorescent probes such as dansyl, fluorescein, and Ru(bpy)(2+)(3) have been used to study affinity maturation, quantify antibody affinities, and investigate polyclonal antibody heterogeneity. Finally, X-ray crystallography has yielded a molecular picture of how antibodies exercise intermolecular forces (e.g., charge-charge interactions, H-bonding, and Van der Waals) to bind haptens. Studies inspired by Landsteiner's original work continue to play an important role in fields ranging from immunodiagnostics to catalytic antibodies.  相似文献   

7.
Song S  Li B  Wang L  Wu H  Hu J  Li M  Fan C 《Molecular bioSystems》2007,3(2):151-158
Antibody microarrays have shown great potential for measurement of either a spectrum of target proteins in proteomics or disease-associated antigens in molecular diagnostics. Despite its importance, the applications of antibody microarrays are still limited by a variety of fundamental problems. Among them, cross-reactivity significantly limits the multiplexing ability in parallel sandwich immunoassays. As a result, it is very important to design new capture probes in order to incorporate a universal label into the assay configuration. In this report, an antibody fragments (F(ab')2) microarray platform for serum tumor markers was developed. Each antigen was detected at different concentrations to assemble its calibration curve, and combinations of different markers were tested to examine the specificity of simultaneous detection based on the F(ab')2 microarrays. Diagnostics of serum samples with this cancer antibody microarray platform and immunoradiometric assays (IRMA) were also performed. Wide range calibration curves (0-1280 U mL(-1)) were obtained for each tumor marker. Comparative studies demonstrated that such F(ab')2 microarrays exhibited both moderately improved sensitivity and better specificity than full-sized monoclonal antibody microarrays. It is also demonstrated that this microarray platform is quantitative, highly specific and reasonably sensitive. More importantly, clinical applications of our F(ab')2 microarray platform for upwards of 100 patient serum samples clearly show its potential in cancer diagnostics.  相似文献   

8.
High-throughput proteomics, based on the microarray platform, requires stable, highly functional components that will yield a highly sensitive read-out of low abundance proteins. Although antibodies are the best characterized binding molecules for this purpose, only a fraction of them appear to behave satisfactorily in the chip format. Therefore, high demands need to be placed on their molecular design. In the present study, we have focused on recombinant antibody design based on a single framework for protein chip applications, aiming at defining crucial molecular probe parameters. Our results show that engineered human recombinant scFv antibody fragments that displayed appropriate biophysical properties (molecular [functional] stability in particular) can be generated, making them prime candidates for high-density antibody arrays. In fact, a superior framework that displays both multifaceted adsorption properties and very high functional stability over several months on chips (stored in a dried-out state) was identified. Taken together, designed scFv fragments based on a single molecular scaffold, readily accessible in large phage display libraries, can undoubtedly meet the requirements of probe content in antibody microarrays, particularly for global proteome analysis.  相似文献   

9.
A universal platform for efficiently mapping antibody epitopes would be of great use for many applications, ranging from antibody therapeutic development to vaccine design. Here we tested the feasibility of using a random peptide microarray to map antibody epitopes. Although peptide microarrays are physically constrained to ~10(4) peptides per array, compared with 10(8) permitted in library panning approaches such as phage display, they enable a much more high though put and direct measure of binding. Long (20 mer) random sequence peptides were chosen for this study to look at an unbiased sampling of sequence space. This sampling of sequence space is sparse, as an exact epitope sequence is unlikely to appear. Commercial monoclonal antibodies with known linear epitopes or polyclonal antibodies raised against engineered 20-mer peptides were used to evaluate this array as an epitope mapping platform. Remarkably, peptides with the most sequence similarity to known epitopes were only slightly more likely to be recognized by the antibody than other random peptides. We explored the ability of two methods singly and in combination to predict the actual epitope from the random sequence peptides bound. Though the epitopes were not directly evident, subtle motifs were found among the top binding peptides for each antibody. These motifs did have some predictive ability in searching for the known epitopes among a set of decoy sequences. The second approach using a windowing alignment strategy, was able to score known epitopes of monoclonal antibodies well within the test dataset, but did not perform as well on polyclonals. Random peptide microarrays of even limited diversity may serve as a useful tool to prioritize candidates for epitope mapping or antigen identification.  相似文献   

10.
We demonstrate that QDs coated with nitrilotriacetic acid (NTA) bound to Ni (2+) can be used to reversibly and selectively bind, purify, and fluorescently label His 6-tagged (N-terminal) glutathione S-transferase (GST) in one step with retention of enzymatic activity. We find binding to be less effective in the absence of the His 6-tag or Ni (2+) ions.  相似文献   

11.
Flavodoxin from the gastric pathogen Helicobacter pylori has been shown to be the electron acceptor of the essential pyruvate-oxidoreductase enzyme complex and proposed to be involved in the pathogenesis of gastric MALToma. In order to obtain a sufficient amount for biochemical and structural studies, we overexpressed the protein either with a C-terminal His(6) -tag or as a fusion protein upstream of intein- and chitin-binding domains. With both expression systems we succeeded at purifying soluble and functional flavodoxin containing the cofactor FMN. When expressing with a His(6) -tag, we purified approximately 20 mg flavodoxin per liter of bacterial culture, while expression as an intein-CBD fusion protein with autocatalytic removal of the intein-CBD part rendered only approximately 1 mg of purified flavodoxin per liter of bacterial culture. Expressed as an intein-CBD fusion protein, flavodoxin copurified with a C-terminal degradation product, which was not observed for expression with a His(6) -tag. However, we were able to obtain protein crystals suited for X-ray structure determination from flavodoxin expressed as an intein-CBD fusion protein, but not from flavodoxin expressed with a C-terminal His(6) -tag. We further report the induction of a rabbit antiserum specific for H. pylori flavodoxin.  相似文献   

12.
Antibody-based microarray is a novel proteomic technology setting a new standard for molecular profiling of non-fractionated complex proteomes. The first generation of antibody microarrays has already demonstrated its potential for generating detailed protein expression profiles, or protein atlases, of human body fluids in health and disease, paving the way for new discoveries within the field of disease proteomics. The process of designing highly miniaturized, high-density and high-performing antibody microarray set-ups have, however, proven to be challenging. In this mini-review we discuss key technological issues that must be addressed in a cross-disciplinary manner before true global proteome analysis can be performed using antibody microarrays.  相似文献   

13.
Carcinoembryonic antigen (CEA) is a seven domain membrane glycoprotein widely used as a tumour marker for adenocarcinomas and as a target for antibody-directed therapies. Structural models have proposed that the first two domains of CEA (the N terminal and adjoining A1 domains) bind MFE-23, a single chain Fv antibody in experimental clinical use. We aimed to produce recombinant N-A1 to test this hypothesis. The N-A1 domains were expressed as soluble protein with a C-terminal hexahistidine tag (His6-tag) in the yeast Pichia pastoris. His6-tagged N-A1 was captured from the supernatant by batch purification with copper-loaded Streamline Chelating, an immobilised metal affinity chromatography (IMAC) matrix usually utilised in expanded bed techniques. Purified N-A1 was heterogeneous with a molecular weight range from 38 to 188 kDa. Deglycosylation with endoglycosidase H (Endo H) resulted in three discrete molecular weight forms of N-A1, one partially mannosylated, one fully Endo H-digested and one fully Endo H-digested but lacking the His6-tag. These were separated by concanavalin A chromatography followed by HiTrap IMAC. The procedure resulted in single-band-purity, mannose-free N-A1. The binding interaction of MFE-23 to N-A1 was analysed by surface plasmon resonance. The affinity constants retrieved were KD = 4.49 x 10(-9)M for the P. pastoris expressed, native N-A1, and 5.33 x 10(-9) M for the Endo H-treated N-A1. To our knowledge this is the first time that two consecutive domains of CEA have been stably expressed and purified from P. pastoris. This work confirms that the CEA epitope recognised by MFE-23 resides in N-A1.  相似文献   

14.
15.
We developed a practical strategy for serum protein profiling using antibody microarrays and applied the method to the identification of potential biomarkers in prostate cancer serum. Protein abundances from 33 prostate cancer and 20 control serum samples were compared to abundances from a common reference pool using a two-color fluorescence assay. Robotically spotted microarrays containing 184 unique antibodies were prepared on two different substrates: polyacrylamide based hydrogels on glass and poly-1-lysine coated glass with a photoreactive cross-linking layer. The hydrogel substrate yielded an average six-fold higher signal-to-noise ratio than the other substrate, and detection of protein binding was possible from a greater number of antibodies using the hydrogels. A statistical filter based on the correlation of data from "reverse-labeled" experiment sets accurately predicted the agreement between the microarray measurements and enzyme-linked immunosorbent assay measurements, showing that this parameter can serve to screen for antibodies that are functional on microarrays. Having defined a set of reliable microarray measurements, we identified five proteins (von Willebrand Factor, immunoglobulinM, Alpha1-antichymotrypsin, Villin and immunoglobulinG) that had significantly different levels between the prostate cancer samples and the controls. These developments enable the immediate use of high-density antibody and protein microarrays in biomarker discovery studies.  相似文献   

16.
Although an affinity tag such as six consecutive histidines, (His)6-tag, has been widely used to obtain high quantity of recombinant proteins, little is known about its influences on heme proteins for lack of structural information. When (His)6-tag was introduced to the N-terminus of a small heme protein, cytochrome b 5, experimental results showed the resultant protein, (His)6-cyt b 5, has similar property and function to that of isolated cyt b 5. To provide structural information for this observation, we herein performed a structural prediction of (His)6-cyt b 5 by molecular modeling in combination with molecular dynamics simulation. The predicted structure, as assessed by a series of criteria with good quality, reveals that the (His)6-tag adopts a helical conformation and packs against the hydrophobic core 2 of cyt b 5 through salt bridges, hydrogen bonding and hydrophobic interactions. The heme group, with the axial His ligands slightly rotated, was found to have similar conformation as in isolated cyt b 5, which indicates that the N-terminal (His)6-tag does not alter the heme active site, resulting in similar dynamics properties for core 1. This study provides valuable information of interactions between (His)6-tag and the rest of the protein, aiding in rational design and application of functional His-tagged proteins.  相似文献   

17.
A new bis-nitrilotriacetic acid (NTA) chelate with catechol anchor was synthesized and immobilized on superparamagnetic iron oxide nanoparticles. When loaded with Ni(II), these bis-NTA-immobilized nanoparticles were shown to bind polyhistidine (His x 6-tagged) fusion proteins in their native, folded conformations that commercial microbeads failed to bind under identical conditions. Control experiments with a mono-NTA chelate immobilized on iron oxide nanoparticles indicate a similarly high affinity for His x 6-tagged native proteins, suggesting that the high density of the mono-NTA chelate presented by the nanoparticles allows the binding of the His x 6-tag to more than one Ni-NTA moiety on the surface. This study shows that the multivalency strategy can be utilized to enhance the binding of His x 6-tagged proteins in their native, folded conformations. We further demonstrated the selective purification of His x 6-tagged proteins from crude cell lysates by using the Ni(II)-loaded iron oxide nanoparticles. The present platform is capable of efficient purification of His x 6-tagged proteins that are expressed at low levels in mammalian cells. This work thus presents a novel nanoparticle-based high-capacity protein purification system with shorter incubation times, proportionally large washes, and significantly smaller elution volumes compared to commercially available microbeads.  相似文献   

18.
A model of molecular interactions on short oligonucleotide microarrays   总被引:21,自引:0,他引:21  
High-density short oligonucleotide microarrays have become a widely used tool for measuring gene expression on a large scale. However, details of the mechanism of binding on microarrays remain unclear. Short oligonucleotide probes currently synthesized on microarrays are often ineffective as a result of limited sequence specificity or low sensitivity. Here, we describe a model of binding interactions on microarrays that reveals how probe signals depend on probe sequences and why certain probes are ineffective. The model indicates that the amount of nonspecific binding can be estimated from a simple rule. Using this model, we have developed an improved measure of gene expression for use in data analysis.  相似文献   

19.
Human L-glutamine: D-fructose-6-phosphate amidotransferase (Gfat1), a recognized target in type 2 diabetes complications, was expressed in Sf9 insect cells with an internal His(6)-tag and purified to homogenity. Two different microplate assays that quantify, respectively D-glucosamine-6-phosphate and L-glutamate were used to analyze the enzyme kinetic properties. The recombinant human L-glutamine: D-fructose-6-phosphate amidotransferase isoform 1 exhibits Michaelis parameters K(m)(Fru-6P)=0.98 mM and K(m)(Gln)=0.84 mM which are similar to the values reported for the same enzyme from different sources. The stimulation of hydrolysis of the alternate substrate L-glutamine para-nitroanilide by D-fructose-6P (Fru-6P) afforded a K(d) of 5 microM for Fru-6P.  相似文献   

20.
Enzymatically active Delta(5)-3-ketosteroid isomerase (KSI) protein with a C-terminus his(6)-tag was produced following insoluble expression using Escherichia coli. A simple, integrated process was used to extract and purify the target protein. Chemical extraction was shown to be as effective as homogenization at releasing the inclusion body proteins from the bacterial cells, with complete release taking less than 20 min. An expanded bed adsorption (EBA) column utilizing immobilized metal affinity chromatography (IMAC) was then used to purify the denatured KSI-(His(6)) protein directly from the chemical extract. This integrated process greatly simplifies the recovery and purification of inclusion body proteins by removing the need for mechanical cell disruption, repeated inclusion body centrifugation, and difficult clarification operations. The integrated chemical extraction and EBA process achieved a very high purity (99%) and recovery (89%) of the KSI-(His(6)), with efficient utilization of the adsorbent matrix (9.74 mg KSI-(His(6))/mL adsorbent). Following purification the protein was refolded by dilution to obtain the biologically active protein. Seventy-nine percent of the expressed KSI-(His(6)) protein was recovered as enzymatically active protein with the described extraction, purification, and refolding process. In addition to demonstrating the operation of this intensified inclusion body process, a plate-based concentration assay detecting KSI-(His(6)) is validated. The intensified process in this work requires minimal optimization for recovering novel his-tagged proteins, and further improves the economic advantage of E. coli as a host organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号