首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect kinins are endogenous, biologically active peptides with various physiological functions. The use of insect kinins in plant protection is being evaluated by many groups. Some kinins have been chosen as lead compounds for pest control. We previously reported an insect kinin mimic IV-3 that had insecticidal activity. And by introducing a strong electron withdrawing group (-CF3) on the benzene ring (Phe2), we discovered a compound, L 7 , with better activity than lead IV-3 . In this work, taking L 7 as the lead compound, we designed and synthesized 13 compounds to evaluate the influence of position 4 (Trp4) of insect kinin on insecticidal activity, by replacing the H atom on tryptophan with -CH3 and -Cl or substituting the indole ring of tryptophan with the benzene, naphthalene, pyridine, imidazole, cyclohexane, and alkyl carboxamides. The aphid bioassay results showed that the compounds M 1 , M 3 , and M 5 were more active than the positive control, pymetrozine. Especially, replacing the side chain by an indole ring with 4-Cl substitution ( M 1 , LC50 = 0.0029 mmol/L) increased the aphicidal activity. The structure–activity relationships (SARs) indicated that the side chain benzene ring at this position may be important to the aphicidal activity. In addition, the toxicity prediction by Toxtree, and the toxicity experiments on Apis mellifera suggested that M 1 was no toxicity risk on a non-target organism. It could be used as a selective and bee-friendly insecticide to control aphids.  相似文献   

2.
Xanthene intermediates 4a and 4b were obtained from the reduction of nitro xanthene derivatives 3a and 3b which were synthesized via condensation of dimedone with m-nitrobenzaldehyde and p-nitrobenzaldehyde, respectively. Then xanthene sulfonamide 6a–n, and xanthene carboxamide derivatives 8a–h were synthesized by reaction of amino xanthene 4a, 4b with sulfonyl chlorides 5a–g and acyl chlorides 7a–d. Structures of the novel amino xanthene compounds and xanthene sulfonamide/carboxamide derivatives were established by their spectral data and elemental analyses. Furthermore, all the synthesized compounds were tested in vitro for their antimicrobial activity. The results were compared with reference standard antibiotics, erythromycin and nystatin. 6c, 6f, 6m and 8b Compounds were found to display most effective antimicrobial activity against a series of bacteria and fungi.  相似文献   

3.
Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.  相似文献   

4.
《Inorganica chimica acta》1988,141(1):119-123
Synthesis and characterization of new cobalt-substituted phenylazo 2,4-dinitrosoresorcinol complexes have been carried out. The analytical data depict the formation of complex compounds with the stoichiometry 2:3 (o-COOH, m-NO2) and 1:2 (o-Cl, o-CH3, m-Cl, m-CH3). All the complexes are of low spin in octahedral and square planar or distorted tetrahedral environments. The octahedral ⇄ tetrahedral equilibria are evident. The complexes in the presence of basic compounds gave some addition products. The electronic transitions and the ligand field parameters are assigned and calculated. The complex formation occurred through the azo group and the phenolic oxygen atom in most complexes. In the o-carboxy ligand, the COO, NN and the oximic groups participate through complexation.  相似文献   

5.
The antagonistic activities of derivatives of spiroethyl phenyl(substituted)piperazine at the 5-HT1A and adrenergic α1d receptors is quantitatively analyzed employing physicochemical and structural parameters. The derived correlation equation revealed that a substituent, other than 2-CH3 in the phenyl ring, having higher molar refraction, MR, and a substituent producing higher positive field effect at the 3-position are beneficial in increasing the binding affinity at the 5-HT1A receptor. In addition, a less hydrophobic substituent at the 4-position is also helpful in augmenting the binding affinity. The 5-R substituents which have higher MR values, however, elicit a detrimental effect. Two disubstituted compounds which are not present in the original data-set and have higher theoretical binding affinities are designed from the correlation equation. These compounds consisting of 2-OCH(CH3)2, 3-Cl and 2-C3H7, 3-Cl in the phenyl ring, have theoretical pKi values 10.57 and 10.12 respectively. For the adrenergic α1d receptor, a less bulky group at the 3-position with 5-Cl (or simply a 3-Cl) is advantageous in increasing the binding affinity. Likewise, a substituent exhibiting a less negative resonance effect at the 4-position and the substituent with low polarizability and showing more a negative resonance effect at the 5-position are suitable for enhancement of the binding affinity. The analysis provides the grounds for rationalizing substituent selection in designing better potency antagonists in the series.  相似文献   

6.
Oligonucleotide analogues containing one or a few glycine, L-, and D-alanine residues instead of phosphodiester internucleotide linkages were synthesized (C3′-NH-C(O)-CH(X)-NH-C(O)-C4′, where X = H, (S)-CH3, and (R)-CH3. The stability of the duplexes of modified oligonucleotides with their wild-type complements was studied. The incorporation of glycine and L-alanine residues into internucleotide linkages was shown to noticeably decrease the stability of modified duplexes as compared to that of native ones (ΔT m∼−2°C per modification), whereas analogues containing D-alanine linkers form duplexes with increased stability (ΔT m∼+2°C per modification).  相似文献   

7.
8.
Association of the ether lipid, 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (ET-18-OCH3) with liposomes (ELL-12) reduces acute toxicity while maintaining or enhancing anticancer activity in experimental tumor models. ELL-12 has been shown to induce apoptosis by a cytochrome-c-dependent caspase-mediated pathway, which results in proteolytic cleavage of poly(ADP-ribose) polymerase and lamins, but the antitumor effects of ET-18-OCH3 or ELL-12 could result from tumor cell differentiation or activation. Here we compared the effects of ET-18-OCH3 and ELL-12 on the expression of cell-surface proteins associated with cell differentiation and/or activation in U-937 cells. Phorbol 12-myristate 13-acetate and all-trans-retinoic acid, which induce differentiation in U-937 cells, up-regulated CD11b (MAC1 α-integrin) and CD82 and down-regulated CD71 (transferrin receptor) in a time- and dose-dependent manner. In contrast, ET-18-OCH3 and ELL-12 up-regulated both CD71 and CD11b and did not have any effect on expression of CD82 in U-937 cells, suggesting that the ELL-12 may activate these cells rather than induce differentiation. Further evidence of activation was that ET-18-OCH3 and ELL-12 strongly induced tumor necrosis factor α production by U-937 cells. Received: 25 February 1999 / Accepted: 4 August 1999  相似文献   

9.
Extracellular ATP at micro- to millimolar concentrations activates Cl conductance and increases cytosolic calcium ([Ca] i ) in many epithelial cells, including the colonic epithelial cell line HT29-Cl.16E. Therefore, [Ca] i has been postulated to be the intracellular messenger for Cl channel activation. HT29-Cl.16E is a highly differentiated cell line that forms confluent monolayers and secretes mucins and Cl. The involvement of [Ca] i in the purinergically-stimulated Cl secretion was investigated pharmacologically in this cell line by whole-cell patch-clamp and Ussing chamber techniques, as well as [Ca] i measurements in fura-2 loaded cells. The calmodulin inhibitors W13 (5 μm) and chlorpromazine (50 μm) abolished increases in ATP-stimulated [Ca] i -increases by 90% and 80%, respectively. However, these inhibitors had no effect on the ATP-stimulated Cl conductance measured in either individual cells or confluent monolayers. As controls, the effects of W13 and chlorpromazine on Ca2+-ionophore stimulated Cl conductance was measured. In this case, the two compounds inhibited whole cell Cl conductance and monolayer Isc by 90% and 100%, respectively. These data demonstrate: (1) The purinergically-stimulated increase in Cl current does not require an increase in [Ca] i , suggesting the involvement of either another signaling pathway or direct activation of Cl channels by purinergic receptors. (2) A calmodulin or a calmodulinlike binding site that is sensitive to W13 and chlorpromazine participates in the regulation of the [Ca] i increase by purinergic receptors in HT29-Cl.16E. Received: 4 December 1995/Revised: 16 August 1996  相似文献   

10.
Toxicological and pharmacological studies demonstrated that the introduction of functional groups into the aromatic ring of diphenyl diselenide alter its effect. The aim of this study was to evaluate the in vitro effect of m-trifluoromethyl-diphenyl diselenide (m-CF3–C6H4Se)2, p-chloro-diphenyl diselenide (p-Cl–C6H4Se)2 and p-methoxyl-diphenyl diselenide (p-CH3O–C6H4Se)2 on δ-aminolevulinate dehydratase (δ-ALA-D) and Na+, K+-ATPase activities in rat brain homogenates. Diselenides inhibited δ-ALA-D activity (IC50 4–6 μM [concentration inhibiting 50%]), and dithiothreitol (DTT) restored the enzyme activity. ZnCl2 (100 μM) did not restore δ-ALA-D inhibition caused by (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2. Na+, K+-ATPase activity was more sensitive to (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2 (IC50 6 μM) than (p-CH3O–C6H4Se)2 and (PhSe)2 (IC50 45 and 31 μM, respectively). DTT restored the activity of Na+, K+-ATPase inhibited by diselenides. The effect of diselenides on Na+/K+-ATPase is dependent on their substitutions in the aromatic ring. The mechanism through which diselenides inhibit δ-ALA-D and Na+, K+-ATPase activities involves the oxidation of thiol groups.  相似文献   

11.
Synthesis of 3-[4-(N-substituted sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyri-do[3′,2′:4,5]selenolo[3,2-d]pyrimidines,7-[4-(N-substituted sulfamoyl)phenyl]-7,8-dihydro-8-oxo-3,4-diphenylpyrimido[4′,5′:4,5]selenolo [2,3-c]pyridazines and 1-[4-(N-substituted sulfamoyl)phenyl]-1,11-dihydro 11-oxo-4-methylpyrimido[4′,5′:4,5]selenolo[2,3-b]quinolines is reported. 4-Amino-N-pyrimidine-2-ylbenzene sulfonamide (a), 4-amino-N-(2,6-dimethylpyrimidin-4-yl)benzene sulfonamide (b), N-[(4-aminophenyl)sulfonyl] acetamide (c) with N-ethoxymethyleneamino of selenolo pyridine, selenolo pyridazine and selenolo quinoline derivatives respectively were obtained starting from 1-amino-N 4-substituted sulfanilamides. Spectroscopic data (IR, 1H NMR, 13C NMR and Mass spectral) confirmed the structure of the newly synthesized compounds. Substituted pyrimidines, pyridazines and quinolines were screened for antibacterial activity against gram-positive and gram-negative bacteria. Selenolo derivative of N-[(4-aminophenyl)sulfonyl] acetamide (substitutent of sulfacetamide c) showed strong bactericidal effect against all the tested organisms. Selenolo[3,2-d]pyrimidin (substitutent a) showed a good bactericidal effect against Serratia marcescens, Staphylococcus aureus and Escherichia coli. Compounds selenolo[2,3-c]pyridazine (substitutent b), selenolo[2,3-b]quinoline(substitutents c)) exhibited a moderate bactericidal effect against Serratia marcescens. None of the synthesized seleno pyridazines has a considerable antimicrobial activity against the tested organisms. The minimum inhibitory concentration (MIC) of the most active compound-3-[4-(N-acetyl sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyrido[3′,2′:4,5]selenolo [3,2-d]pyrimidine was 10 mg ml−1.  相似文献   

12.
A series of germanium and silicon incorporated diorganotin derivatives of general formula where R1 = H3C, C6H5, p-CH3C6H4, p-FC6H4; R2 = H2CSi(CH3)2C6H5, H2CC6H5, p-CH3C7H7 were synthesized by the reaction of appropriate diorganotin dichlorides and germatranyl (substituted) propionic acid in 1:2 mole ratio, respectively. The evidence regarding their structure is mainly based on spectroscopic data obtained by multinuclear (1H, 13C, 29Si, 119Sn) NMR and 119mSn Mössbauer, IR and mass spectral studies in combination with melting points and elemental analyses. The compounds have been screened for in vitro anti-leishmanial activity against promastigotes of Leishmania major and the results offer potent activities which are better than the standard drug, pentamidine, for one compound.  相似文献   

13.
The cobalt(II) addition compounds [Co(X-salo)2(Y)], where X-salo is the anion of substituted salicylaldehydes (X = 3-OCH3, 5-CH3, 5-Cl, 5-NO2 and Y = the neutral 1,10 phenanthroline or neocuproine), were synthesized and characterized by physicochemical and spectral (IR, UV-Vis) data. Theoretical calculations (DFT, ZINDO, TD DFT) with gaussian 03 for the prediction of the electronic spectrum for the compounds, gave good correlation with the experimental one in the solid state and in solution. The cyclic voltammetry study in CH3CN gave all the expected waves for the redox processes of the metal Co(II) and the ligands phen or neoc and salicylaldehydes. The X-ray diffraction study of three compounds [Co(5-NO2-salo)2(phen)], [Co(5-CH3-salo)2(neoc)] and [Co(5-Cl-salo)2(neoc)] verified their analogous proposed octahedral arrangement of the ligands around the cobalt(II) atom.  相似文献   

14.
Using cotransporters as drug delivery vehicles is a topic of continuing interest. We examined glucose derivatives containing conjugated aromatic rings using two isoforms of the Na+/glucose cotransporter: human SGLT1 (hSGLT1) and pig SGLT3 (pSGLT3, SAAT1). Our studies indicate that there is similarity between SGLT1 and SGLT3 in the overall architecture of the vestibule leading to the sugar-binding site but differences in translocation pathway interactions. Indican was transported by hSGLT1 with higher affinity (K0.5 0.06 mm) and 2-naphthylglucose with lower affinity (K0.5 0.5 mm) than α-methyl-d-glucopyranoside (αMDG, 0.2 mm). Both were poorly transported (maximal velocities, I max , 14% and 8% of αMDG). Other compounds were inhibitors (K i s 1–13 mm). In pSGLT3, indican and 2-naphthylglucose were transported with higher affinity than αMDG (K0.5s 0.9, 0.2 and 2.5 mm and relative I max s of 80, 25 and 100%). Phenylglucose and arbutin were transported with higher I max s (130 and 120%) and comparable K0.5s (8 and 1 mm). Increased affinity of indican relative to αMDG suggests that nitrogen in the pyrrole ring is favorable in both transporters. Higher affinity of 2-naphthylglucose for pSGLT3 than hSGLT1 suggests more extensive hydrophobic/aromatic interaction in pSGLT3 than in hSGLT1. Our results indicate that bulky hydrophobic glucosides can be transported by hSGLT1 and pSGLT3, and discrimination between them is based on steric factors and requirements for H-bonding. This provides information for design of glycosides with potential therapeutic value. Received: 18 February 2000/Revised: 13 April 2000  相似文献   

15.
Summary Seed inoculation with Rhizobium and soil inoculation withGlomus fasciculatum increased nodulation, nitrogen and phosphorus concentration in plants and yield of chickpea (Cicer arietinum) var. BG 212 in pots containing unsterilized soil especially with 50kgP2O5 ha−1 in the form of superphosphate. Inoculation with Rhizobium orG. fasciculatum separately or in combination significantly increased the N2 fixed in straw and grain than uninoculated controls as determined by15N atom percent excess of plants grown in soil amended with labelled ammonium sulphate (15NH4)2SO4) at the rate of 20kg N ha−1. These increases were most pronounced when P was applied at 50kgP2O5 ha−1.  相似文献   

16.
We analyzed cleavage of precursor tRNAs with an LNA, 2′-OCH3, 2′-H or 2′-F modification at the canonical (c0) site by bacterial RNase P. We infer that the major function of the 2′-substituent at nt −1 during substrate ground state binding is to accept an H-bond. Cleavage of the LNA substrate at the c0 site by Escherichia coli RNase P RNA demonstrated that the transition state for cleavage can in principle be achieved with a locked C3′ -endo ribose and without the H-bond donor function of the 2′-substituent. LNA and 2′-OCH3 suppressed processing at the major aberrant m1 site; instead, the m+1 (nt +1/+2) site was utilized. For the LNA variant, parallel pathways leading to cleavage at the c0 and m+1 sites had different pH profiles, with a higher Mg2+ requirement for c0 versus m+1 cleavage. The strong catalytic defect for LNA and 2′-OCH3 supports a model where the extra methylene (LNA) or methyl group (2′-OCH3) causes a steric interference with a nearby bound catalytic Mg2+ during its recoordination on the way to the transition state for cleavage. The presence of the protein cofactor suppressed the ground state binding defects, but not the catalytic defects.  相似文献   

17.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

18.
Novel sulfonamide derivatives 6ai, as new carbonic anhydrase inhibitors which candidate for glaucoma treatment, were synthesized from the reactions of 4-amino-N-(4-sulfamoylphenyl) benzamide 4 and sulfonyl chloride derivatives 5ai with high yield (71–90%). The structures of these compounds were confirmed by using spectral analysis (FT-IR, 1H NMR, 13C NMR, LC/MS and HRMS). The inhibition effects of 6ai on the hydratase and esterase activities of human carbonic anhydrase isoenzymes, hCA I and II, which were purified from human erythrocytes with Sepharose®4B-l-tyrosine-p-aminobenzene sulfonamide affinity chromatography, were studied as in vitro, and IC50 and Ki values were determined. The results show that newly synthesized compounds have quite powerful inhibitory properties.  相似文献   

19.
Previous squid-axon studies identified a novel K/HCO3 cotransporter that is insensitive to disulfonic stilbene derivatives. This cotransporter presumably responds to intracellular alkali loads by moving K+ and HCO 3 out of the cell, tending to lower intracellular pH (pHi). With an inwardly directed K/HCO3 gradient, the cotransporter mediates a net uptake of alkali (i.e., K+ and HCO 3 influx). Here we test the hypothesis that intracellular quaternary ammonium ions (QA+) inhibit the inwardly directed cotransporter by interacting at the intracellular K+ site. We computed the equivalent HCO 3 influx (J HCO3) mediated by the cotransporter from the rate of pHi increase, as measured with pH-sensitive microelectrodes. We dialyzed axons to pHi 8.0, using a dialysis fluid (DF) free of K+, Na+ and Cl. Our standard artificial seawater (ASW) also lacked Na+, K+ and Cl. After halting dialysis, we introduced an ASW containing 437 mm K+ and 0.5% CO2/12 mm HCO 3, which (i) caused membrane potential to become transiently very positive, and (ii) caused a rapid pHi decrease, due to CO2 influx, followed by a slower plateau-phase pHi increase, due to inward cotransport of K+ and HCO 3. With no QA+ in the DF, J HCO3 was ∼58 pmole cm−2 sec−1. With 400 mm tetraethylammonium (TEA+) in the DF, J HCO3 was virtually zero. The apparent K i for intracellular TEA+ was ∼78 mm, more than two orders of magnitude greater than that obtained by others for inhibition of K+ channels. Introducing 100 mm inhibitor into the DF reduced J HCO3 to ∼20 pmole cm−2 sec−1 for tetramethylammonium (TMA+), ∼24 for TEA+, ∼10 for tetrapropylammonium (TPA+), and virtually zero for tetrabutylammonium (TBA+). The apparent K i value for TBA+ is ∼0.86 mm. The most potent inhibitor was phenyl-propyltetraethylammonium (PPTEA+), with an apparent K i of ∼91 μm. Thus, trans-side quaternary ammonium ions inhibit K/HCO3 influx in the potency sequence PPTEA+ > TBA+ > TPA+ > TEA+≅ TMA+. The identification of inhibitors of the K/HCO3 cotransporter, for which no inhibitors previously existed, will facilitate the study of this transporter. Received: 21 November 2000/Revised: 14 May 2001  相似文献   

20.
Microscopic assessment and microphotometric measurement of the fluorescence intensity of human metaphase chromosomes stained with 24 9-amino acridine derivatives differing in chemical structure, led to the following conclusions:
1. 1. With the -OCH3 group as a substituted radical in the acridine core, the fluorescent intensity of the stain bonded with chromosomes increases. The best fluorochromes contain this group in position 5 or 7. The fluorescent intensity increases in the presence of a halogen atom in position 3, or with a second -OCH3 group in position 4. These observations suggest that the rise in fluorescent intensity is caused by substitutes that increase the density of the π electrons in acridine rings.
2. 2. Weak fluorescent intensity is displayed by 9-amino acridine derivatives containing less than 3 -CH2 groups in the side chain in position 9.
3. 3. Alkylizing the guanine of chromosomal DNA by acridine derivatives is not an indispensible condition for achieving well differentiated fluorescence of metaphase chromosomes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号