首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyridoxal 5'-phosphate (PLP) is an inhibitor of DNA polymerase activity of Escherichia coli DNA polymerase I large fragment. Kinetic studies indicated that overall PLP inhibition was noncompetitive with respect to dNTP, and Hill plot analysis revealed that two molecules of PLP were involved in the inhibition. Reduction of the PLP-treated enzyme with sodium [3H]borohydride resulted in covalent incorporation of 3 mol of PLP/mol of enzyme. This incorporation was at lysine residues exclusively, and the PLP-modified enzyme was not capable of DNA polymerase activity. The presence of dNTP during the modification reaction blocked the incorporation of 1 mol of PLP/mol of enzyme. Similar results were obtained in the presence or absence of template-primer. These data indicate that a PLP target lysine is in or around a dNTP binding site that is essential for polymerase activity and that this binding site is functional in the absence of template-primer. The enzyme modified in the presence of dNTP, containing 2 mol of PLP/mol of enzyme, was capable of DNA polymerase activity but was unable to conduct elongation of product molecules beyond a short oligonucleotide length.  相似文献   

2.
Mechanisms of error discrimination by Escherichia coli DNA polymerase I   总被引:2,自引:0,他引:2  
The mechanism of base selection by DNA polymerase I of Escherichia coli has been investigated by kinetic analysis. The apparent KM for the insertion of the complementary nucleotide dATP into the hook polymer poly(dT)-oligo(dA) was found to be 6-fold lower than that for the noncomplementary nucleotide dGTP, whereas the Vmax for insertion of dATP was 1600-fold higher than that for dGTP. The ratio of Kcat/KM values for complementary and mismatched nucleotides of 10(4) demonstrates the extremely high specificity of base selection by DNA polymerase I and is in agreement with results obtained with a different template-primer, poly(dC)-oligo(dG) [El-Deiry, W. S., Downey, K. M., & So, A. G. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 7378]. Studies on the effects of phosphate ion on the polymerase and 3'- to 5'-exonuclease activities of DNA polymerase I showed that, whereas the polymerase activity was somewhat stimulated by phosphate, the exonuclease activity was markedly inhibited, being 50% inhibited at 25 mM phosphate and greater than 90% inhibited at 80 mM phosphate. Selective inhibition of the exonuclease activity by phosphate also resulted in inhibition of template-dependent conversion of a noncomplementary dNTP to dNMP and, consequently, markedly affected the kinetic constants for insertion of noncomplementary nucleotides. The mutagenic metal ion Mn2+ was found to affect error discrimination by both the polymerase and 3'- and 5'-exonuclease activities of DNA polymerase I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3′→5′ exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5‐ to 4‐fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error‐producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.  相似文献   

5.
Curing of the mini-ColE1 plasmid pML21 was observed among cells of Escherichia coli K-12 strain C600(pML21) grown under subinhibitory conditions in the presence of trimethoprim, a specific inhibitor of dihydrofolate reductase. Some of the cured colonies showed (i) a reduction in frequency of transformation with pML21 compared with those of isogenic strains not treated with trimethoprim, (ii) loss of viability after acquisition of a recA mutation, and (iii) UV sensitivity greater than that of the original isogenic strain. These colonies therefore had PolA- phenotypes. Moreover, they were found to be deficient in DNA polymerase I activity in the in vitro assays, indicating the occurrence of a polA mutation in them. Many of the colonies with PolA- phenotypes were also thyA deoC mutants, and these mutations, in addition to the polA mutations, appeared to be involved in the expression of the PolA- phenotypes.  相似文献   

6.
7.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

8.
Xie P  Sayers JR 《PloS one》2011,6(1):e16213
Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of ~930 residues, possessing DNA-dependent DNA polymerase, 3'-5' proofreading and 5'-3' exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5'-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5'-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5'-nuclease domain can transit from the inactive mode, with the 5'-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5'-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5'-3' exonuclease activities. Moreover, predicted results for the latter model are presented.  相似文献   

9.
The electrostatic field of the large fragment of Escherichia coli DNA polymerase I (Klenow fragment) has been calculated by the finite difference procedure on a 2 A grid. The potential field is substantially negative at physiological pH (reflecting the net negative charge at this pH). The largest regions of positive potential are in the deep crevice of the C-terminal domain, which is the proposed binding site for the DNA substrate. Within the crevice, the electrostatic potential has a partly helical form. If the DNA is positioned to fulfil stereochemical requirements, then the positive potential generally follows the major groove and (to a lesser extent) the negative potential is in the minor groove. Such an arrangement could stabilize DNA configurations related by screw symmetry. The histidine residues of the Klenow fragment give the positive field of the groove a sensitivity to relatively small pH changes around neutrality. We suggest that the histidine residues could change their ionization states in response to DNA binding, and that this effect could contribute to the protein-DNA binding energy.  相似文献   

10.
An in vitro system was used to study DNA synthesis in lysates of Escherichia coli cells which had been grown in the presence of ethionine. Such lysates showed a reduced capacity to incorporate [3H]TTP into high-molecular-weight material. Activity could be restored by incubation with S-adenosyl methionine and ATP. S-adenosyl methionine-reactivated TTP incorporation required the presence of DNA polymerase I, ATP, and all four deoxyribonucleotide triphosphates. DNA polymerase III was not required.  相似文献   

11.
Mutants of Escherichia coli lacking RNase HI activity and cells induced for the SOS response express modes of DNA replication independent of protein synthesis, called constitutive and induced stable DNA replication, respectively. We report here that mutants deleted for the polA gene express induced stable DNA replication at approximately 25-fold the rate of wild-type cells, whereas constitutive stable DNA replication is not enhanced.  相似文献   

12.
We examined the effects of mutations in the polA (encoding DNA polymerase I) and polB (DNA polymerase II) genes on inducible and constitutive stable DNA replication (iSDR and cSDR, respectively), the two alternative DNA replication systems of Escherichia coli. The polA25::miniTn10spc mutation severely inactivated cSDR, whereas polA1 mutants exhibited a significant extent of cSDR. cSDR required both the polymerase and 5'-->3' exonuclease activities of DNA polymerase I. A similar requirement for both activities was found in replication of the pBR322 plasmid in vivo. DNA polymerase II was required neither for cSDR nor for iSDR. In addition, we found that the lethal combination of an rnhA (RNase HI) and a polA mutation could be suppressed by the lexA(Def) mutation.  相似文献   

13.
Kinetics of base misinsertion by DNA polymerase I of Escherichia coli   总被引:9,自引:0,他引:9  
A simple kinetic analysis of the values of kcat and KM for base insertion and misinsertion during DNA replication is presented and applied to the problem of base misinsertion by DNA polymerase I of Escherichia coli. The role of minor tautomeric forms of deoxynucleoside triphosphates (dNTPs) in purine x pyrimidine mismatching has been examined and it has been shown that the misinsertion frequency via this route should be close to the tautomerization constant in solution and is independent of any effect of the polymerase on the tautomerization of a dNTP when bound. Kinetic data on purine x pyrimidine mismatching indicate that the dNTP in a polymerase-DNA-mismatched-dNTP complex is predominantly in the major tautomeric form. The mutagenic effect of Mn2+ in DNA replication is shown to be mediated by decreasing the values of kcat/KM for the insertion of correct dNTPs, whilst the values of this rate constant for misinsertion are relatively unaffected or increased.  相似文献   

14.
A protein which promotes DNA strand transfer between linear double-stranded M13mp19 DNA and single-stranded viral M13mp19 DNA has been isolated from recA- E.coli. The protein is DNA polymerase I. Strand transfer activity residues in the small fragment encoding the 5'-3' exonuclease and can be detected using a recombinant protein comprising the first 324 amino acids encoded by polA. Either the recombinant 5'-3' exonuclease or intact DNA polymerase I can catalyze joint molecule formation, in reactions requiring only Mg2+ and homologous DNA substrates. Both kinds of reactions are unaffected by added ATP. Electron microscopy shows that the joint molecules formed in these reactions bear displaced single strands and therefore this reaction is not simply promoted by annealing of exonuclease-gapped molecules. The pairing reaction is also polar and displaces the 5'-end of the non-complementary strand, extending the heteroduplex joint in a 5'-3' direction relative to the displaced strand. Thus strand transfer occurs with the same polarity as nick translation. These results show that E.coli, like many eukaryotes, possesses a protein which can promote ATP-independent strand-transfer reactions and raises questions concerning the possible biological role of this function.  相似文献   

15.
Recognition of B and Z forms of DNA by Escherichia coli DNA polymerase I   总被引:6,自引:0,他引:6  
Since the substrate binding domain of the large proteolytic fragment of Escherichia coli DNA polymerase I has been shown to interact with the B forms of DNA, we have studied the ability of this enzyme to recognize structures other than the B form. The polymerase activity has been used to evaluate the degree of recognition of the B and Z forms of DNA. The Z form was found to promote less activity, indicating the probable inability of the polymerase to move along the conformationally rigid form of the template. The present study indicates that the Z-DNA found in vivo may have a role in the control of replication.  相似文献   

16.
AIMS: A kinetic 5'-nuclease polymerase chain reaction (real-time PCR) for the quantification of Escherichia coli was developed. METHODS AND RESULTS: Specific primers and a fluorogenic probe oriented to sfmD gene, encoding a putative outer membrane export usher protein, were designed. The PCR system was highly specific and sensitive for E. coli, as determined with 37 non-E. coli strains (exclusivity, 100%) and 24 E. coli strains (inclusivity, 100%). When used in real-time PCR, linear calibration lines were obtained in the range from 10(2) to 10(8) CFU ml(-1) for three E. coli strains. Salmonella Enteritidis (10(6) CFU ml(-1)) or Citrobacter freundii (10(6) CFU ml(1)) had no effect on quantification of E. coli by the method. CONCLUSIONS: The developed real-time PCR is suitable for rapid quantification of E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: In connection to an appropriate sample preparation technique, the method is suitable for food safety and technological hygiene applications.  相似文献   

17.
Mammalian DNA polymerase beta is the smallest known eukaryotic polymerase and is expressed as an active protein in Escherichia coli harboring a plasmid containing its cDNA. Since some catalytic functions of DNA polymerase beta and E. coli DNA polymerase I are similar, we wished to determine if DNA polymerase beta could substitute for DNA polymerase I in bacteria. We found that the expression of mammalian DNA polymerase beta in E. coli restored growth in a DNA polymerase I-defective bacterial mutant. Sucrose density gradient analysis revealed that DNA polymerase beta complements the replication defect in the mutant by increasing the rate of joining of Okazaki fragments. These findings demonstrate that DNA polymerase beta, believed to function in DNA repair in mammalian cells, can also function in DNA replication. Moreover, this complementation system will permit study of the in vivo function of altered species of DNA polymerase beta, an analysis currently precluded by the difficulty in isolating mutants in mammalian cells.  相似文献   

18.
DNA polymerase I* is a form of the DNA polymerase I isolated from Escherichia coli which are expressing recA/lexA (SOS) functions. Induction of recA or polA1 cells by nalidixic acid does not result in the appearance of pol I*, but lexA or recA mutants that are constitutive for SOS functions constitutively express pol I* and mutants which lack functional recA protein produce pol I* when they carry a lexA mutation which renders the lexA repressor inoperative. Pol I* has been induced by nalidixic acid in dinA, dinD, dinF, and umuC mutants. Polymerase I* has a lower affinity for single-stranded DNA-agarose than polymerase I and it sediments through sucrose gradients in a dispersed manner between 6.6-10.5 S, whereas polymerase I sediments at 5 S. Whereas pol I* migrates significantly faster than pol I in nondenaturing polyacrylamide gels, the active polypeptide of both forms migrates at the same rate in denaturing polyacrylamide gels. Compared with polymerase I, polymerase I* has an enhanced capacity to incorporate the adenine analog, 2-amino-purine, into activated salmon sperm DNA and a relatively low fidelity in replicating synthetic polydeoxyribonucleotides. Both the 3'----5' (proofreading) and 5'----3' (nick-translational) exonuclease activities of pol I* and pol I are indistinguishable. Estimates of processivity give a value of approximately 6 for both forms of the enzyme.  相似文献   

19.
20.
To assess the functional importance of the J-helix region of Escherichia coli DNA polymerase I, we performed site-directed mutagenesis of the following five residues: Asn-675, Gln-677, Asn-678, Ile-679, and Pro-680. Of these, the Q677A mutant is polymerase-defective with no change in its exonuclease activity. In contrast, the N678A mutant has unchanged polymerase activity but shows increased mismatch-directed exonuclease activity. Interestingly, mutation of Pro-680 has a Q677A-like effect on polymerase activity and an N678A-like effect on the exonuclease activity. Mutation of Pro-680 to Gly or Gln results in a 10-30-fold reduction in k(cat) on homo- and heteropolymeric template-primers, with no significant change in relative DNA binding affinity or K(m)((dNTP)). The mutants P680G and P680Q also showed a nearly complete loss in the processive mode of DNA synthesis. Since the side chain of proline is generally non-reactive, mutation of Pro-680 may be expected to alter the physical form of the J-helix itself. The biochemical properties of P680G/P680Q together with the structural observation that J-helix assumes helical or coiled secondary structure in the polymerase or exonuclease mode-bound DNA complexes suggest that the structural alteration in the J-helix region may be responsible for the controlled shuttling of DNA between the polymerase and the exonuclease sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号