首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of centrally administered galanin (Gal; 100 pM i.c.v.) on the hypothalamo-neurohypophysial storage as well as blood plasma level of vasopressin and oxytocin was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. Gal i.c.v. treatment did not alter vasopressin and oxytocin content both in the hypothalamus and neurohypophysis as well as their concentration in blood plasma of not haemorrhaged rats. Haemorrhage decreased the hypothalamic and neurohypophysial vasopressin and oxytocin storage but increased the neurohormones plasma level in animals injected with vehicle solution. During the haemorrhage, the increase in plasma vasopressin and oxytocin was inhibited in rats previously treated i.c.v. with galanin. The hypothalamic and neurohypophysial vasopressin as well as oxytocin content significantly increased in animals treated with galanin and subsequently haemorrhaged. These results suggest that galanin may have a regulatory role in the hypothalamo-neurohypophysial function especially under condition of hypovolemia.  相似文献   

2.
Rats dehydrated for 8 days and subsequently rehydrated were given intracerebroventricularly (i.c.v.) methoxamine hydrochloride (MX) or dihydroergotamine methanosulphonate (DHE), each in a daily dose of 10 micrograms dissolved in 10 microliter of 0.9% sodium chloride. A single dose of MX injected to normally hydrated animals increased the release of hypothalamic and neurohypophysial vasopressin but did not affect significantly the oxytocic activity in the hypothalamus as well as in the neurohypophysis. Under conditions of dehydration MX did not influence the hypothalamic vasopressin content but it stimulated the neurohypophysial vasopressin depletion. On the contrary, MX distinctly inhibited the decrease of hypothalamic and neurohypophysial oxytocin content in dehydrated animals. In rehydrated animals MX restrained some what the renewal of hypothalamic vasopressin and oxytocin storage but intensified this process in the neurohypophysis. A single dose of DHE decreased the vasopressin content in the hypothalamus as well as the oxytocin content both in the hypothalamus and neurohypophysis. Under conditions of dehydration DHE stimulated the depletion of hypothalamic vasopressin and oxytocin. On the contrary, DHE strongly inhibited the depletion of oxytocin in the neurohypophysis of dehydrated rats. DHE restrained the renewal of hypothalamic vasopressin and oxytocin stores as well as intensified this process in the neurohypophysis of subsequently rehydrated rats.  相似文献   

3.
Neurons that synthesize melanin-concentrating hormone (MCH) colocalize GABA, regulate energy homeostasis, modulate water intake, and influence anxiety, stress, and social interaction. Similarly, vasopressin and oxytocin can influence the same behaviors and states, suggesting that these neuropeptides may exert part of their effect by modulating MCH neurons. Using whole cell recording in MCH-green fluorescent protein (GFP) transgenic mouse hypothalamic brain slices, we found that both vasopressin and oxytocin evoked a substantial excitatory effect. Both peptides reversibly increased spike frequency and depolarized the membrane potential in a concentration-dependent and tetrodotoxin-resistant manner, indicating a direct effect. Substitution of lithium for extracellular sodium, Na(+)/Ca(2+) exchanger blockers KB-R7943 and SN-6, and intracellular calcium chelator BAPTA, all substantially reduced the vasopressin-mediated depolarization, suggesting activation of the Na(+)/Ca(2+) exchanger. Vasopressin reduced input resistance, and the vasopressin-mediated depolarization was attenuated by SKF-96265, suggesting a second mechanism based on opening nonselective cation channels. Neither vasopressin nor oxytocin showed substantial excitatory actions on lateral hypothalamic inhibitory neurons identified in a glutamate decarboxylase 67 (GAD67)-GFP mouse. The primary vasopressin receptor was vasopressin receptor 1a (V1aR), as suggested by the excitation by V1aR agonist [Arg(8)]vasotocin, the selective V1aR agonist [Phe(2)]OVT and by the presence of V1aR mRNA in MCH cells, but not in other nearby GABA cells, as detected with single-cell RT-PCR. Oxytocin receptor mRNA was also detected in MCH neurons. Together, these data suggest that vasopressin or oxytocin exert a minimal effect on most GABA neurons in the lateral hypothalamus but exert a robust excitatory effect on presumptive GABA cells that contain MCH. Thus, some of the central actions of vasopressin and oxytocin may be mediated through MCH cells.  相似文献   

4.
Summary Immunoreactive galanin-like material was recently shown to co-exist with vasopressin in parvocellular and magnocellular perikarya of the paraventricular nucleus in the anterior hypothalamus of the rat (Melander et al. 1986). Since this distribution pattern differed from our observation of oxytocin-associated galanin-like immunoreactivity (LI) in the neurohypophysis, we compared in series of 0.5-m thick sections the localisation of galanin-LI with the localisation of oxytocin and vasopressin/dynorphin in the hypothalamus, the median eminence and the neurohypophysis. In the oxytocin system, galanin-LI was intense in oxytocin varicosities of the neurohypophysis. Oxytocin perikarya of the hypothalamic supraoptic and paraventricular nuclei exhibited galanin-LI only after intraventricular injection of colchicine and when sections were treated with trypsin prior to application of the antibody. In the vasopressin/dynorphin system galanin-LI was intense in hypothalamic perikarya after colchicine injection and in neurohypophysial varicosities after treatment of the sections with trypsin. In these neurones, galanin-LI was absent or weak in all elements when treatments with colchicine or trypsin were omitted. Galanin-LI in the neurohypophysis was not co-localised with the numerous fine endings showing GABA-LI. These observations indicate that galanin-like material coexists with vasopressin and oxytocin in the respective magnocellular neurones, although not always in an immunoreactive form.  相似文献   

5.
This study was performed to determine whether oxytocin or vasopressin affect the transport of spermatozoa from the epididymis of rams in vivo. Under general anaesthesia, cannulae were inserted into each ductus deferens and passed into the cauda epididymis of 24 Oxford Down cross rams and the luminal fluid was collected at 10 min intervals for 2-3 h. Animals were divided into seven groups and received either (i) 2 ml 0.9% saline, (ii) 10 micrograms oxytocin, (iii) 100 micrograms oxytocin, (iv) 100 micrograms oxytocin antagonist, (v) 300 micrograms oxytocin antagonist followed by 100 micrograms oxytocin, (vi) 100 micrograms vasopressin, or (vii) 100 micrograms vasopressin followed by 100 micrograms oxytocin, all by i.v. injection. The mass of fluid and number of spermatozoa in each 10 min sample was measured and the motility of the spermatozoa was assessed. Treatment with saline did not affect the mass or the number of spermatozoa in the fluid collected. Oxytocin at 10 micrograms significantly increased both the output of fluid and the number of spermatozoa by twofold. Oxytocin at 100 micrograms produced a greater increase in both fluid output and the number of spermatozoa within 10 min of administration of the peptide. Treatment with oxytocin antagonist had no immediate effect, but subsequently caused a significant reduction in both fluid output and the number of spermatozoa. Pretreatment with oxytocin antagonist inhibited the stimulatory effect of oxytocin. Vasopressin did not increase the number or concentration of spermatozoa in the fluid and appeared to decrease fluid output. No significant changes in the morphology or motility of the spermatozoa collected was observed in any of the samples. These data demonstrate that oxytocin has specific actions on the epididymis to increase sperm transport. They indicate that local oxytocin may be involved in regulating basal contractility of the cauda epididymidis and that augmentation by the peptide in the peripheral circulation, as occurs around the time of ejaculation, may promote a significant increase in the transport of spermatozoa into the vas deferens and ejaculate.  相似文献   

6.
Oxytocin has been implicated in the modulation of somatosensory transmission such as nociception and pain. The present study investigates the effect of oxytocin on formalin-induced pain response, a model of tonic continuous pain. The animals were injected with 0.1 ml of 1% formalin in the right hindpaw and the left hindpaw was injected with an equal volume of normal saline. The time spent by the animals licking or biting the injected paw during 0-5 min (early phase) and 20-25 min (late phase) was recorded separately. Oxytocin (25, 50, 100 microg/kg, i.p.) dose dependently decreased the licking/biting response, both in the early as well as the late phases. The antinociceptive effect of oxytocin (100 microg/kg, i.p.) was significantly attenuated in both the phases by a higher dose of the non-selective opioid receptor antagonist naloxone (5 mg/kg, i.p.), MR 2266 (0.1 mg/kg, i.p.), a selective kappa-opioid receptor antagonist and naltrindole (0.5 mg/kg, i.p.), a selective delta-opioid receptor antagonist but not by a lower dose of naloxone (1 mg/kg, i.p.) or beta-funaltrexamine (2.5 microg/mouse, i.c.v.), a selective mu-opioid receptor antagonist. Nimodipine, a calcium channel blocker (1 and 5 mg/kg, i.p.) produced a dose-dependent analgesic effect. The antinociceptive effect of oxytocin was significantly enhanced by the lower dose of nimodipine (1 mg/kg, i.p.) in both the phases. Chronic treatment with oxytocin (100 microg/kg/day, i.p. daily for 7 days) did not produce tolerance in both the phases of formalin-induced pain response. The results thus indicate that oxytocin displays an important analgesic response in formalin test; both kappa- and delta-opioid receptors as well as voltage-gated calcium channels seem to be involved in the oxytocin-induced antinociception.  相似文献   

7.
The effect of intraventricular 6-hydroxydopamine on the content of oxytocin and vasopressin in the hypothalamus and pituitary gland of water deprived rats. Acta Physiol. Pol., 1977, 28 (6): 497-504. Rats received one infusion of 200 microgram 6-hydroxydopamine with 25 microgram of ascorbic acid into the lateral cerebral ventricle. After 57 days some rats were deprived of water for 4, 8 or 12 days. Then, the animals were sacrificed by decapitation. Oxytocin was determined in extracts from the posterior pituitary lobe and hypothalamus by the method of Van Dongen and Hays, while the vasopressin content was determined by the method of Dekanski. It was found that 6-hydroxydopamine injection into the cerebral ventricles causes a rise in oxytocin content in the hypothalamus and prevents its fall during--4--12 days of dehydration.  相似文献   

8.
The 12- to 24-month-old Holstein bulls were electroejaculated twice on each of 3 days per week throughout the study. After a 2-week stabilization period and subsequent 2-week pre-treatment period, 7 bulls were given 50 i.u. oxytocin via the jugular vein 10 min before each first ejaculate for 10 weeks. The 7 control bulls were handled identically but did not receive oxytocin. All bulls were castrated at the end of the study. Oxytocin was without effect on spermatogenesis (P greater than 0.10). Oxytocin did not alter the total number of spermatozoa harvested per collection day (P greater than 0.10), but increased the number of spermatozoa in first ejaculates by an average of 34.2% (P less than 0.025). Oxytocin did not affect sperm quality (P greater than 0.10) as judged by the motility of spermatozoa in fresh semen or by the motility or percentage of spermatozoa with intact acrosomes in thawed semen. It is concluded that 50 i.u. oxytocin enhanced sperm output in first ejaculates of electroejaculated bulls without altering daily sperm production or seminal quality.  相似文献   

9.
Since the thyrotropin-releasing hormone (TRH) can modulate the processes of vasopressin (AVP) and oxytocin (OT) biosynthesis and release mainly at the hypothalamo-neurohypophysial level, the present experiments were undertaken to estimate whether TRH, administered intravenously in different doses, modifies these mechanisms under conditions of osmotic stimulation, brought about by dehydration. AVP and OT contents in the hypothalamus and neurohypophysis as well as plasma levels of AVP, OT, free thyroxine (FT4) and free triiodothyronine (FT3) were studied after intravenously TRH treatment in euhydrated and dehydrated for two days male rats. Under conditions of equilibrated water metabolism TRH diminished significantly the hypothalamic and neurohypophysial AVP and OT content but was without the effect on plasma oxytocin level; however, TRH in a dose of 100 ng/100 g b.w. raised plasma AVP level. TRH, injected i.v. to dehydrated animals, resulted in a diminution of AVP content in the hypothalamus but did not affect the hypothalamic OT stores. After osmotic stimulation, neurohypophysial AVP and OT release was significantly restricted in TRH-treated rats. Under the same conditions, injections of TRH were followed by a significant decrease of plasma OT level. I.v. injected TRH enhanced somewhat FT3 concentration in blood plasma of euhydrated animals but diminished FT4 plasma level during dehydration. Data from the present study suggest that TRH displays different character of action on vasopressin and oxytocin secretion in relation to the actual state of water metabolism.  相似文献   

10.
Pantethine, a cysteamine precursor, depletes somatostatin in the cerebral cortex and hypothalamus and prolactin in the anterior pituitary and hypothalamus. This study investigated the effect of pantethine on oxytocin and arginine vasopressin content in the posterior pituitary and hypothalamus. Male Long-Evans rats were injected intraperitoneally with escalating doses of pantethine (i.e., 146.7 mg, 293.4 mg and 586.6 mg/100 gm body weight). Hormone content was determined by radioimmunoassay. Three hours after pantethine treatment, the oxytocin content in the posterior pituitary and the hypothalamus was markedly reduced with all doses of the drug. Vasopressin content in the posterior pituitary and hypothalamus was decreased but to a lesser extent than oxytocin and only with the highest dose of pantethine. Pantethine may act to reduce oxytocin and vasopressin content through intracellular conversion to cysteamine. The exact mechanism of action of pantethine on oxytocin and vasopressin remains to be elucidated.  相似文献   

11.
Role of central alpha2-adrenoceptors in the regulation of hypothalamic magnocellular cells was studied under hyperosmotic challenge elicited by hypertonic saline (HS). Rats pretreated with receptor agonist, xylazine (XYL), were injected intraperitoneally with different (low: 0.375, moderate: 0.75, high: 1.5 M) HS 30 min later. The activity of the paraventricular (PVN) and supraoptic (SON) vasopressin and oxytocin perikarya was established by Fos-dual-immunohistochemistry 60 min after HS administration. Results showed that 1/XYL is a potent stimulus for oxytocin but not vasopressin magnocellular cells under basal and weak hyperosmotic conditions 2/highHS completely overlaps the effect of XYL. In addition, XYL partially suppressed Fos expression in the parvocellular PVN cells activated by highHS. The data suggest that alpha2-adrenoceptors may play an important role in the regulation of oxytocinergic PVN and SON neurons under basal and weak hyperosmotic conditions and that alpha2-adrenoceptors may also participate in the control of PVN parvocellular cells under intense osmotic challenge.  相似文献   

12.
Oxytocin mRNA was detected in the rat hypothalamus by in situ hybridization to a single stranded 35S-labelled DNA probe and the distribution of oxytocin mRNA-containing cell groups was studied at the macroscopic level. Specificity of hybridization was confirmed by comparison to vasopressin mRNA hybridization in parallel tissue sections. Cell groups containing oxytocin mRNA were confined to a set of hypothalamic cell groups, i.c. the supraoptic, paraventricular, anterior commissural nuclei, nucleus circularis and scattered hypothalamic islets. These cell groups displayed similar densities of autoradiographic signals indicating that the oxytocin gene is expressed at approximately the same average level at these various sites.  相似文献   

13.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A microdialysis system (MDS) was implanted in corpora lutea (CL) from cows (Days 5-7, 8-12, and 15-18 of the estrous cycle); the CL were maintained in organ culture chambers. With this system, active substances can be applied, and a collection of steroids released from luteal cells surrounding the microcapillary (cut-off point = 100 kDa) is possible, while luteal cells maintain cell-to-cell contact. Spontaneous pulses of progesterone release were observed in 90% of control (perfused with Ringer's solution only) at 60-80 min intervals. The infusion of bovine LH (bLH) for 20 min (0.1-10 micrograms/ml) stimulated dose-dependent release of progesterone. Both results indicate that the CL maintains the activity of progesterone release and the ability to respond to LH stimulation in this system. Oxytocin (1-100 microM) also stimulated progesterone release in a dose-dependent manner. Preexposure with oxytocin antagonist blocked the stimulatory effect of oxytocin (p less than 0.01) but not of LH (p less than 0.05), confirming the specificity of the effect. When CL were prestimulated with a low dose of oxytocin (1 microM, 20 min) twice before bLH application, the release of progesterone by bLH (1 micrograms/ml, 20 min) was more pronounced (p less than 0.05). A long-term infusion (3 h) with oxytocin and/or bLH stimulated the release of progesterone for the whole period of time. Oxytocin was most stimulative during the early luteal phase (Days 5-7) and decreased continuously from Days 8-12 to Days 15-18.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
《Theriogenology》1996,45(8):1523-1533
Exogenous oxytocin aids in the transcervical passage of an AI gun into the uterus of ewes, and it may be an effective adjunct to sheep AI procedures. However, the effects of oxytocin on sperm transport and fertility are unclear. Thus, experiments were conducted to evaluate the effects of oxytocin on variables that may affect fertility. In Experiment 1, five ewes/group received intravenous injections of 0, 50, 100, 200 or 400 USP units of oxytocin. Oxytocin enhanced (P < 0.001) uterine entry; the rates were 0% for control, 60% for the 50- and 100-unit doses, and 100% for the 200- and 400-unit doses. In Experiment 2, five ewes/group received intravenous injections of 0, 50, 100, 200, or 400 USP units of oxytocin, and the effect on uterine contractions was observed with a laparoscope. Oxytocin induced myometrial tetany within 2 min. The dose affected (P < 0.05) the duration of tetany, which was 0, 21, 27, 29, and 41 min for the 0-, 50-, 100-, 200- and 400-unit doses, respectively. In Experiment 3, either 0 or 200 USP units of oxytocin were injected intravenously 52 h after removal of progestogen pessaries from 20 ewes. Ewes were inseminated laparoscopically 10 min later with fresh, extended semen (500 × 106 sperm cells) into the right uterine horn. Ewes were slaughtered 20 h after AI, and the numbers of spermatozoa were determined. Oxytocin did not affect (P > 0.05) the movement of spermatozoa throughout the uterus and into both oviducts. In summary, oxytocin induced myometrial tetany and permitted the passage of the tip of an AI gun into the uterus. However, oxytocin did not disrupt sperm transport to the oviducts. We conclude that oxytocin-induced cervical dilation may be a useful adjunct to transcervical intrauterine AI procedures for sheep.  相似文献   

16.
垂体后叶素和加压素对离体心肌的直接作用   总被引:2,自引:0,他引:2  
本实验采用大鼠离体右心房和右心室肌条模型,观察了垂体后叶素和加压素对右心房和右心室肌的直接作用。结果表明:垂体后叶素对右心房的自主性收缩频率和幅度及右心室肌的收缩幅度均有剂量依赖性抑制作用;加压素对右心房和右心室肌收缩幅度也有剂量依赖性抑制作用,但对右心房自主节律无影响;催产素对右心房的收缩频率和幅度则均无影响。加压素V_1、V_2受体拮抗剂d(CH_2)_5Tyr(Me)AVP和d(CH_2)_5(D-Ile~2,Ile~4,Ala(NH_2)~9)AVP对垂体后叶素的负性变力作用具有不同程度的阻断作用,但对垂体后叶素的负性变时作用无阻断作用。以上结果提示,垂体后叶素的负性变力作用主要是由加压素产生的,加压素对心肌有直接的负性变力作用;垂体后叶素的负性变时作用可能是非加压素和催产素成分的作用结果。  相似文献   

17.
J T Pan  L M Mai 《Life sciences》1990,47(26):2443-2450
The roles of oxytocin and vasopressin on prolactin secretion were studied. Adult female Sprague-Dawley rats ovariectomized for two weeks and treated with a long-acting estrogen, polyestradiol phosphate for one week were used. Hormone administration and serial blood sampling were accomplished through indwelling intra-atrial catheters which were implanted two days before the experiment. Both oxytocin (20 micrograms/rat) and vasopressin (5 micrograms/rat) stimulated prolactin secretion within 10 min after injection and the effects were diminished by 30 min. In animals pretreated with a small dose of dopamine antagonist, sulpiride (1 microgram/rat), the effect of TRH on prolactin secretion was repeatedly shown to be potentiated. Same pretreatments with two different time intervals (30 and 60 min) between sulpiride and oxytocin/vasopressin administration, however, had no effect on oxytocin- or vasopressin-stimulated prolactin secretion. A vasopressin analog, 1-deamino-[D-Arg8]-vasopressin (dDAVP), with antidiuretic but no vasopressor activity was also used in the study. It was found that unlike vasopressin, dDAVP had no effect on prolactin secretion. In conclusion, both oxytocin and vasopressin can have a stimulatory effect on prolactin secretion when given in vivo. Unlike TRH, however, the action of oxytocin or vasopressin was not augmented by pretreatments of dopamine antagonist. The action of vasopressin on prolactin secretion may be a side effect of its vasopressor activity.  相似文献   

18.
Under conditions of equilibrated water metabolism a single dose of methoxamine increased the content of vasopressin in the hypothalamus as well as that of oxytocin both in the hypothalamus and neurohypophysis. During dehydration the depletion of hypothalamic and neurohypophysial vasopressin was more marked in methoxamine-treated animals; this effect, however, was absent in the neurohypophysis on the 2nd day and in the hypothalamus on the 8th day of water deprivation. After two days of dehydration methoxamine inhibited the decrease of oxytocin content in the hypothalamus; simultaneously (2nd and 4th day of dehydration) it intensified this process in the neurohypophysis. During rehydration methoxamine impaired the renewal of vasopressin both in the hypothalamus and neurohypophysis; this effect was most marked on the 8th day of rehydration. On the contrary, it favoured somewhat the renewal of hypothalamic oxytocin in rehydrated rats (such an event was not found on the 8th day of rehydration). Moreover, methoxamine restrained initially (on the 2nd and 4th day of rehydration) the restoration of neurohypophysial oxytocin stores; following eight days of rehydration an opposite effect was here found. It is concluded that the response of the vasopressinergic and oxytocinergic neurons to alpha-adrenergic stimulation, brought about by using methoxamine as pharmacological tool, seems to be depended on the actual state of water metabolism. Impulses from the osmoreceptors may be therefore of some importance in modifying the change in vasopressin and oxytocin synthesis, transport and release resulting from stimulation of alpha-adrenergic transmission through neural chains including units susceptible to methoxamine.  相似文献   

19.
Uterine responses to vasopressin and oxytocin were monitored in non-pregnant and 3- or 6-8-day-pregnant rabbits by recording the intrauterine pressure. Oxytocin stimulated uterine activity in all groups, but the effect of vasopressin was stimulatory in non-pregnant animals, inhibitory in those 3 days post coitum and weakly stimulatory in those later in pregnancy. Inhibition of prostaglandin (PG) synthesis, by the administration of indomethacin, reduced the spontaneous uterine activity as well as the responses to oxytocin and vasopressin in the non-pregnant rabbits, but had little effect in the pregnant animals. During infusion of PGF-2alpha, PGE-1 or PGE-2 in 6-8-day-pregnant rabbits, the stimulatory response to vasopressin, although slight before the infusion, was inhibited whereas the stimulatory response to oxytocin remained virtually unchanged. The results suggest that vasopressin and oxytocin under certain hormonal conditions, are able to activated the uterine contractions by mechanisms in which the involvement of PG is not obligatory.  相似文献   

20.
The effect of CCK-8 (50 ng, i.c.v.) on the neurohypophysial vasopressin and oxytocin storage was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. In another experimental series rats dehydrated for three days were given CCK-8 in a daily i.c.v. dose of 50 ng. The neurohypophysial vasopressin and oxytocin content was bioassayed by pressor effect following Dekański or milk-ejection activity in vitro following van Dongen and Hays, respectively. The decrease of neurohypophysial vasopressin and oxytocin content, brought about by dehydration, was significantly less marked in animals treated with CCK-8. The depletion of neurohypophysial vasopressin and oxytocin content in haemorrhaged animals could be completely inhibited by earlier i.c.v. administration of CCK-8. It is suggested that hypothalamic cholecystokinin may serve as a modulator of neurohypophysial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号