首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Methylated anthocyanin glycosides were isolated from red Canna indica flower and identified as malvidin 3-O-(6-O-acetyl-β-d-glucopyranoside)-5-O-β-d-glucopyranoside (1), malvidin 3,5-O-β-d-diglucopyranoside (2), cyanidin-3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside (3), cyanidin-3-O-(6″-O-α-rhamnopyranosyl)-β-galactopyranoside (4), cyanidin-3-O-β-glucopyranoside (5) and cyanidin-O-β-galactopyranoside (6) by HPLC-PDA. Their structures were subsequently determined on the basis of spectroscopic analyses, that is, 1H NMR, 13C NMR, HMQC, HMBC, ESI-MS, and UV-vis. Compounds (1-4) were found to be in major quantity while compounds (5-6) were in minor quantity.  相似文献   

2.
Antibacterial phenolic components from Eriocaulon buergerianum   总被引:1,自引:0,他引:1  
Fang JJ  Ye G  Chen WL  Zhao WM 《Phytochemistry》2008,69(5):1279-1286
Five phenolic components, 1,3,6-trihydroxy-2,5,7-trimethoxyxanthone (1), 7,3′-dihydroxy-5,4′,5′-trimethoxyisoflavone (2), toralactone-9-O-β-d-glucopyranoside (3), patuletin-3-O-[2-O-E-feruloyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside] (4), patuletin-3-O-[β-d-glucopyranosyl-(1 → 3)-2-O-E-caffeoyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside] (5), along with 19 known compounds were isolated from Eriocaulon buergerianum (Eriocaulaceae). Their structures were determined by spectroscopic and chemical methods. All 24 isolated compounds were tested against the pathogenic bacteria Staphylococcus aureus (ATCC 25923); as a result, 10 compounds were found to exhibit antibacterial activity with MICs ranging from 32 to 256 μg/ml.  相似文献   

3.
Lu Y  Luo J  Huang X  Kong L 《Steroids》2009,74(1):95-628
Two novel C-22 steroidal lactone saponins, namely solanolactosides A, B (1, 2) and two new spirostanol glycosides, namely torvosides M, N (3, 4) were isolated from ethanol extract of aerial parts of Solanum torvum. Their structures were characterized as solanolide 6-O-[α-l-rhamnopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (1), solanolide 6-O-[β-d-xylopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (2), yamogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (3) and neochlorogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (4) on the basis of spectroscopic analysis. The cytotoxicities of the saponins (1-4) were evaluated in vitro against a panel of human cancer cell lines. Compounds 3 and 4 showed significant cytotoxic activity with the cell lines.  相似文献   

4.
Zhang Z  Li S  Ownby S  Wang P  Yuan W  Zhang W  Scott Beasley R 《Phytochemistry》2008,69(10):2070-2080
Phytochemical investigation on the whole plant of Eryngium yuccifolium resulted in the isolation and identification of three phenolic compounds (1-3) and 12 polyhydroxylated triterpenoid saponins, named eryngiosides A-L (4-15), together with four known compounds kaempferol-3-O-(2,6-di-O-trans-p-coumaroyl)-β-d-glucopyranoside (16), caffeic acid (17), 21β-angeloyloxy-3β-[β-d-glucopyranosyl-(1→2)]-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,22α,28-tetrol (18), and saniculasaponin III (19). This study reports the isolation of these compounds and their structural elucidation by extensive spectroscopic analyses and chemical degradation.  相似文献   

5.
The iridoid glycosides, genipin 1-O-β-d-isomaltoside (1) and genipin 1,10-di-O-β-d-glucopyranoside (2), together with six known iridoid glycosides, genipin 1-O-β-d-gentiobioside (3), geniposide (4), scandoside methyl ester (5), deacetylasperulosidic acid methyl ester (6), 6-O-methyldeacetylasperulosidic acid methyl ester (7), and gardenoside (8) were isolated from an EtOH extract of Gardeniae Fructus. The structures and relative stereochemistries of the metabolites were elucidated on the basis of 1D- and 2D-NMR spectroscopic techniques, high-resolution mass spectrometry, and chemical evidence. Geniposide (4), one of the main compounds of Gardeniae Fructus, was tested for treatment of ankle sprain using an ankle sprain model in rats. From the second to fifth day, the geniposide (4) (100 mg/ml) treated group exhibited significant differences (p < 0.01) with ∼21-34% reduction in swelling ratio compared with those of the vehicle treated control group. This indicated the potential effect of geniposide (4) for the treatment of disorders such as ankle sprain.  相似文献   

6.
A lignan glucoside, (+)-pinoresinol 4-O-[6″-O-galloyl]-β-d-glucopyranoside (1), and two megastigmane glucosides, named macarangiosides E and F (2,3), together with 15 known compounds (4-18) were isolated from leaves of Macarangatanarius (L.) Müll.-Arg. (Euphorbiaceae). Their structures were elucidated by spectroscopic and chemical analyses. In addition, the absolute stereochemistry of macarangiosides B and C isolated previously from the same plant was also determined for the first time. Compounds 1 and 2 were galloylated on glucose and possessed potent DPPH radical-scavenging activity.  相似文献   

7.
An ethanol extract of the aerial parts of Delphinium gracile DC. yielded five flavonol glycosides quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-caffeoyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (1), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (2), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(Z-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (3), kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (4) kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (5) in addition to 4-(β-d-glucopyranosyloxy)-6-methyl-2H-pyran-2-one (6) and rutin. Structures were elucidated by spectroscopic methods.  相似文献   

8.
Sialyl Lewis (sLex) is the smallest naturally occurring carbohydrate ligand that binds to E-Selectin on the activated endothelium. We report here the total synthesis of acetic acid-sLex analog (12), for testing as a therapeutic agent. Methoxyethyl 4-O-(3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (3) was prepared starting from the methoxyethyl-β-d-lactoside (2), which was selectively benzoylated to give the methoxyethyl 2,6-di-O-benzoyl-4-O-(2,6-di-O-benzoyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Glycosylation of acceptor 4 with methyl 2,3,4-tri-O-benzyl-1-thio-β-l-fucopyranoside (5) in the presence of cupric bromide and tetrabutylammonium bromide afforded the corresponding methoxyethyl 2,6-di-O-benzyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-4-O-(2,6-di-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). Selective removal of the 4″,6″-O-isopropylidene group from 6 gave the deprotected trisaccharide 7. The regioselective esterification of O-3″ of trisaccharide 8 (obtained from the dibutylstannylene derivative of 7) with benzyl-2-bromoacetate and tetrabutylammonium bromide afforded the 3″-O-carbobenzyloxymethyl trisaccharide derivative 9, which on saponification and hydrogenolysis with palladium-charcoal afforded the target trisaccharide 12 glycomimetic of Sialyl Lewis (sLex) trisaccharide omitting the sialic acid moiety.  相似文献   

9.
Flavones and flavone glycosides from Halophila johnsonii   总被引:1,自引:0,他引:1  
Halophila johnsonii Eiseman is a shallow-water marine angiosperm which contains UV-absorbing metabolites. Studies on methanol extracts of H. johnsonii by means of HPLC-UV, NMR, HPLC-MS resulted in isolation and identification of seven previously unknown flavone glycosides: 5,6,7,3′,4′,5′-hexahydroxyflavone-7-O-β-glucopyranoside (1), 5,6,7,3′,4′,5′-hexahydroxyflavone-7-O-(6″-O-acetyl)-β-glucopyranoside (2), 6-hydroxyluteolin-7-O-(6″-O-acetyl)-β-glucopyranoside (3), 6-hydroxyapigenin-7-O-(6″-O-acetyl)-β-glucopyranoside (4), 6-hydroxyapigenin-7-O-(6″-O-[E]-coumaroyl)-β-glucopyranoside (5), 6-hydroxyapigenin-7-O-(6″-O-[E]-caffeoyl)-β-glucopyranoside (6) and 6-hydroxyluteolin-7-O-(6″-O-[E]-coumaroyl)-β-glucopyranoside (7). Also isolated were three known flavone glycosides, 6-hydroxyluteolin 7-O-β-glucopyranoside (8), scutellarein-7-O-β-glucopyranoside (9), and spicoside (10), and five known flavones, pedalitin (11), ladanetin (12), luteolin (13), apegenin (14) and myricetin (15). Qualitative comparison of the flavonoid distribution in the leaf and rhizome-root portions of the plant was also investigated, with the aim of establishing the UV-protecting roles that flavonoids played in the sea grass.  相似文献   

10.
Rosmarinic acid, its analogues, and a phenolic compound were obtained from G. hederacea var. longituba. There were two new compounds, methyl isoferuloyl-7-(3,4-dihydroxyphenyl) lactate (1) and benzyl-4′-hydroxy-benzoyl-3′-O-β-d-glucopyranoside (4), and four known compounds (2, 3, 5 and 6). The structures of these compounds were determined on the basis of spectroscopic methods. Each compound was tested by NF-κB luciferase assay and three rosmarinic acid analogues inhibited NF-κB production and the induction of COX-2 and iNOS mRNA in HepG2 cells.  相似文献   

11.
From the methanol extract of Cardamine diphylla rhizome, 5′-O-β-d-glucopyranosyl-dihydroascorbigen (1) and 6-hydroxyindole-3-carboxylic acid 6-O-β-d-glucopyranoside (2) were isolated. The structures of the compounds were elucidated using spectroscopic methods. This is the second report on the presence of a glucosylated indole ascorbigen in plants.  相似文献   

12.
The aerial parts of Aruncus dioicus var. kamtschaticus afforded five new monoterpenoids (1-5): 4-(erythro-6,7-dihydroxy-9-methylpent-8-enyl)furan-2(5H)-one (1, aruncin A), 2-(8-ethoxy-8-methylpropylidene)-5-hydroxy-3,6-dihydro-2H-pyran-4-carboxylic acid (2, aruncin B), 4-(hydroxymethyl)-6-(8-methylprop-7-enyl)-5,6-dihydro-2H-pyran-2-one-11-O-β-d-glucopyranoside (3, aruncide A), (3S,4S,5R,10R)-3-(10-ethoxy-11-hydroxyethyl)-4-(5-hydroxy-7-methylbut-6-enyl)oxetan-2-one-11-O-β-d-glucopyranoside (4, aruncide B), and (3S,4S,5R,7R)-5-(9-methylprop-8-enyl)-1,6-dioxabicyclo[3,2,0]heptan-2-one-7-(hydroxymethyl)-12-O-β-d-glucopyranoside (5, aruncide C). Compound 2 showed potent cytotoxicity against Jurkat T cells with an IC50 value of 17.15 μg/mL. In addition, compounds 7 and 10 exhibited moderate antioxidant activity with IC50 values of 46.3 and 11.7 μM, respectively.  相似文献   

13.
Dunalianosides A-I (1-9), esters of arbutin and related phenolic glucosides, were isolated from the buds of Vaccinium dunalianum Wight (Ericaceae) together with 20 known compounds, and their structures were established on the basis of 1- and 2D NMR spectroscopic evidence. Dunalianosides F-H were dimers of p-hydroxyphenyl 6-O-trans-caffeoyl-β-d-glucopyranoside (10). The latter was obtained in extraordinary high yield (22% of dry weight), and dunalianoside I (9) was found to be a conjugate of arbutin with an iridoid glucoside.  相似文献   

14.
Iridoid glycosides, 2′,3′,6′-tri-O-acetyl-4′-O-trans-p-(O-β-d-glucopyranosyl)coumaroyl-7-ketologanin (1), 2′-O-caffeoylloganic acid (2), 2′-O-p-hydroxybenzoylloganic acid (3), 2′-O-trans-p-coumaroylloganic acid (4), and 2′-O-cis-p-coumaroylloganic acid (5), were isolated from whole plants of Gentiana loureirii along with six known iridoids, 7-ketologanin (6), loganin (7), loganic acid (8), sweroside, boonein, and isoboonein, and three other known compounds. Their structures were elucidated by spectroscopic means and chemical correlations. The isolated iridoids were evaluated for antibacterial and antioxidant activities, but were either inactive or very weakly active.  相似文献   

15.
Anthocyanins in Caprifoliaceae   总被引:1,自引:0,他引:1  
The qualitative and relative quantitative anthocyanin content of 19 species belonging to the genera Sambucus, Lonicera and Viburnum in the family Caprifoliaceae has been determined. Altogether 12 anthocyanins were identified; the 3-O-glucoside (2), 3-O-galactoside (5), 3-O-(6″-O-arabinosylglucoside) (7), 3-O-(6″-O-rhamnosylglucoside) (9), 3-O-(2″-O-xylosyl-6″-O-rhamnosylglucoside) (10), 3-O-(2″-O-xylosylgalactoside) (11), 3-O-(2″-O-xylosylglucoside) (12), 3-O-(2″-O-xylosylglucoside)-5-O-glucoside (14), 3-O-(2″-O-xylosyl-6″-O-Z-p-coumaroylglucoside)-5-O-glucoside (15) and 3-O-(2″-O-xylosyl-6″-O-E-p-coumaroylglucoside)-5-O-glucoside (16) of cyanidin, in addition to the 3-O-glucosides of pelargonidin and delphinidin (1 and 3). Pigment 7 is the first complete identification of the disaccharide vicianose, 6″-O-α-arabinopyranosyl-β-glucopyranose, linked to an anthocyanidin.  相似文献   

16.
Li JB  Hashimoto F  Shimizu K  Sakata Y 《Phytochemistry》2008,69(18):3166-3171
Five anthocyanins, cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(Z)-p-coumaroyl)-β-galactopyranoside (2), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-p-coumaroyl)-β-galactopyranoside (3), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-caffeoyl)-β-galactopyranoside (4), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-galactopyranoside (5), and cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-glucopyranoside (6), together with the known cyanidin 3-O-(2-O-β-xylopyranosyl)-β-galactopyranoside (1), were isolated from red flowers of Camellia cultivar ‘Dalicha’ (Camellia reticulata) by chromatography using open columns. Their structures were subsequently determined on the basis of spectroscopic analyses, i.e., 1H NMR, 13C NMR, HMQC, HMBC, HR ESI-MS and UV-vis.  相似文献   

17.
A new cardenolide, 17β-H-periplogenin-3-O-β-d-digitoxoside (1), and a new pregnane glycoside, Δ5-pregnene-3β,16α-diol-d-O-[2,4-O-diacetyl-β-digitalopyranosyl-(1 → 4)-β-d-cymaropyranoside]-16-O-[β-d-glucopyranoside] (2) were isolated from the roots of Streptocaulon tomentosum (Asclepiadaceae) together with a series of known compounds. Their chemotaxonomic significance for the separation of S. tomentosum from Streptocaulon juventas is discussed, suggesting a rather clear distinction of these species.  相似文献   

18.
Four cycloartane glycosides, 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,16β,23α,25-pentahydroxy-20(R),24(S)-epoxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-16-O-hydroxyacetoxy-23-O-acetoxy-3β,6α,25-trihydroxy-20(R),24(S)-epoxycycloartane (2), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,23α,25-tetrahydroxy-20(R),24(R)-16β,24;20,24-diepoxycycloartane (3), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-25-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), along with three known cycloartane glycosides were isolated from the MeOH extract of the roots of Astragalus campylosema ssp. campylosema. Their structures were established by the extensive use of 1D- and 2D-NMR experiments along with ESIMS and HRMS analysis. The occurrence of the hydroxyl function at position 23 (1-2) and of the ketalic function at C-24 (3) are very unusual findings in the cycloartane class.  相似文献   

19.
The structures of 11 acylated cyanidin 3-sophoroside-5-glucosides (pigments 1-11), isolated from the flowers of Iberis umbellata cultivars (Cruciferae), were elucidated by chemical and spectroscopic methods. Pigments 1-11 were acylated with malonic acid, p-coumaric acid, ferulic acid, sinapic acid and/or glucosylhydroxycinnamic acids.Pigments 1-11 were classified into four groups by the substitution patterns of the linear acylated residues at the 3-position of the cyanidin. In the first group, pigments 1-3 were determined to be cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 1, ferulic acid for pigment 2 and sinapic acid for pigment 3. In the second one, pigments 4-6 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 4, ferulic acid for pigment 5 and sinapic acid for pigment 6. In the third one, pigments 7-9 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which the acyl moiety varied with none for pigment 7, ferulic acid for pigment 8, and sinapic acid for pigment 9. In the last one, pigments 10 and 11 were cyanidin 3-O-[2-O-(2-O-(acyl)-β-glucopyranosyl)-6-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-feruloyl)-β-glucopyranosyl)-trans-p-coumaroyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside], in which acyl moieties were none for pigment 10 and ferulic acid for pigment 11.The distribution of these pigments was examined in the flowers of four cultivars of I. umbellata by HPLC analysis. Pigment 1 acylated with one molecule of p-coumaric acid was dominantly observed in purple-violet cultivars. On the other hand, pigments (9 and 11) acylated with three molecules of hydroxycinnamic acids were observed in lilac (purple-violet) cultivars as major anthocyanins. The bluing effect and stability on these anthocyanin colors were discussed in relation to the molecular number of hydroxycinnamic acids in these anthocyanin molecules.  相似文献   

20.
One new ursane-type triterpenoid glycoside, asiaticoside G (1), five triterpenoids, asiaticoside (2), asiaticoside F (3), asiatic acid (4), quadranoside IV (5), and 2α,3β,6β-trihydroxyolean-12-en-28-oic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (6), and four flavonoids, kaempferol (7), quercetin (8), astragalin (9), and isoquercetin (10) were isolated from the leaves of Centella asiatica. Their chemical structures were elucidated by mass, 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy. The structure of new compound 1 was determined to be 2α,3β,23,30-tetrahydroxyurs-12-en-28-oic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester. The anti-inflammatory activities of the isolated compounds were investigated on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Asiaticoside G (1) potently inhibited the production of nitric oxide and tumor necrosis factor-α with inhibition rates of 77.3% and 69.0%, respectively, at the concentration of 100 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号