首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the following heavy metals, copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), on haemocytes of the house fly Musca domestica L. was studied under laboratory conditions. House fly larvae were exposed to low or high, semi-lethal concentrations of metals. These particular metals were selected because they are present in polluted environments in Poland. In addition, we studied expression of the stress proteins HSP70 and HSP72 in haemocytes collected from larvae that had been exposed to heavy metal. The obtained results showed changes in haemocytes morphology and phagocytotic plasticity in the experimental flies in comparison to control. The number of prohaemocytes, regarded as stem cells, increased, while granulocytes, responsible for phagocytosis, decreased. However, we have not detected any clear changes in expression of HSP70 or HSP72 in flies treated with low or high concentrations of the heavy metals.  相似文献   

2.
Anthropogenic metal pollutants bioaccumulated in benthic animals by means of feeding and osmotic diffusion. These metals may affect the physiology of the benthos. In this study, we exposed Capitella sp. I to three metals (Cd, Pb, and Ni), each in eight different concentrations, to determine the effects of metals on the animals. Growth rate, ingestion rate, and percent survival were estimated in three separated experiments. The growth and feeding of the worms were sensitive to even the lowest concentrations of each metal added to the sediments. The lowest observable adverse effect levels for Cd, Ni, and Pb were 0.03, 1.59, and 0.41 μmol g 1 sediment, respectively. Growth rates in the elevated metal contaminant treatments decreased drastically at slightly contaminated levels, lessened detrimental effects at moderately contaminated levels, and showed incompensable intoxication at heavily contaminated levels. The trends in ingestion rates were similar to those of growth rates. No significant difference in survivorship was found among the different contaminant levels for any of the three heavy metals. Capitella sp. I was most sensitive to Cd, followed by Ni and Pb, which had similar effects. The rapid physiological responses of Capitella sp. I allowed the animals to survive metal exposure. Sediment productivity remained unchanged at different contamination levels of Ni and Pb, but was drastically reduced at 4.75 μmol g 1 Cd in the sediment. This further demonstrated Capitella sp. I can adjust their ingestion rates to maintain constant sediment productivities in moderate pollution conditions; however, when threshold concentration was exceeded, homeostasis collapsed.  相似文献   

3.
行道树毛白杨树干中重金属元素分布   总被引:3,自引:1,他引:2  
王荣芬  邱尔发  唐丽清 《生态学报》2014,34(15):4212-4222
采用电感耦合等离子体发射光谱法(ICP),测定分析首都机场高速公路旁毛白杨(Populus tomentosa Carr.)树干中Pb、Cd、Cr、Cu、Zn、Ni和Mn 7种重金属元素的含量及积累量,比较分析树干不同组织、不同方位、不同龄级年轮重金属含量差异及与交通量、关键气候因子的相关性。结果表明:树干木质部中各重金属平均含量由大到小依次为Zn、Cu、Cr、Mn、Ni、Pb、Cd,树皮中依次为Zn、Mn、Cr、Pb、Cu、Cd、Ni,树皮中各重金属元素的含量明显高于木质部;同一树干木质部中,各重金属元素在不同方位的分布有所差异,其中,靠近车道一侧的各重金属元素含量均高于背离车道一侧,南北向比较中,Ni、Zn为南侧含量高于北侧,其他5种重金属元素均为北侧高于南侧;以5a为一个龄级将年轮划分为5个龄组,各龄级年轮中重金属含量随时间的变化趋势各异,其中Pb、Cd、Cu、Zn总体呈递减趋势,且与年降水量、最低气温、日照时数、雨天日数和大风日数呈正相关趋势,与年平均气温和最高气温呈负相关趋势;各元素在毛白杨树干木质部中的积累量表现为ZnCrCuMnPbNiCd。  相似文献   

4.
A limiting factor in land application of sewage sludge is the resultant heavy metal accumulation in soils followed by biomagnification in the food chain, posing a potential hazard to animal and human health. In view of this fact, pot experiments were conducted to evaluate the effect of digested sludge application to soil on phytotoxicity of heavy metals such as Cd, Cr, Ni, and Pb to radish (Raphanus sativus L.) plants. Increasing sludge levels resulted in increased levels of DTPA-extractable heavy metals in the soil. Cadmium was the dominant metal extracted by DTPA followed by Ni, Pb, and Cr. The extractability of metals by DTPA tended to decrease from the first to the second crop. Dry matter yield of radish increased significantly as a function of increasing sludge treatments. Soil application of sludge raised the concentration of one or more heavy metals in plants. Shoots contained higher concentrations of Cd, Cr, and Ni than the roots of radish plants. Shoot concentrations of Cd, Cr, Ni, and Pb were within the tolerance levels of this crop at all rates of sludge application. Shoot as well as root concentration of Cd was above 0.5 mg kg?1, considered toxic for human and animal consumption. The levels of DTPA-extractable Cd and Ni were less correlated while those of Cr and Pb were more correlated with their respective shoot and root contents. The results emphasize that accumulation of potentially toxic heavy metals in soil and their build-up in vegetable crops should not be ignored when sludge is applied as an amendment to land.  相似文献   

5.
Pinus banksiana andPicea glauca inoculated or not with the ectomycorrhizal fungusSuillus luteus were grown in a sandy loam soil containing a range of Cd, Cu, Ni, Pb and Zn concentrations. Ectomycorrhizal colonization rates were significantly reduced on Pinus and Picea seedlings by the heavy metals, particularly Cd and Ni. Needle tissue metal concentrations were lower in ectomycorrhizal seedlings at low soil metal concentrations. However, at higher soil concentrations, heavy metal concentrations of needle tissue were similar in ectomycorrhizal and nonmycorrhizal plants. The growth of nonmycorrhizal seedlings exposed to heavy metals was reduced compared to those inoculated withSuillus luteus. Apparently ectomycorrhizal colonization can protect Pinus and Picea seedlings from heavy metal toxicity at low or intermediate soil concentrations of Cd, Cu, Ni, Pb and Zn.  相似文献   

6.
Organisms produce stress proteins as a response to natural and anthropogenic environmental changes. Induction of stress proteins has been reported in a variety of aquatic organisms, including rotifers, exposed to pollutants. Past studies on stress protein responses of rotifers have focused on exposure to single toxicants. In this study the rotifer Plationus patulus was exposed singly and in combination to various concentrations of As, Cr, Cu, Ni, Pb, and Zn. Following exposure, total protein was quantified (Bradford method) and stress protein 60 (HSP60) was identified using Western blotting. P. patulus induced HSP60 as a response to single exposures to Cr, Cu, Ni, Pb and Zn. HSP60 expression was increased (2 fold) in rotifers exposed to these single elements at both low and high concentrations as compared to unexposed rotifers. Arsenic exposure resulted in a 2 fold decrease in HSP induction. In rotifers exposed to metal mixtures, HSP60 was induced by the presence of As–Zn, As–Cr–Cu–Pb, As–Cr–Cu, As–Cr–Cu–Ni and As–Cr–Cu–Ni–Pb combinations in the media. HSP60 response to As and heavy metals toxicity depends on the type and number of elements present in the media as well as their concentrations and length of the exposure time.  相似文献   

7.
A total of 59 topsoil and corresponding maize plants were collected from this study area. The spatial distribution, correlation analysis, and multiple linear regression of heavy metals were researched detailedly in this article. The results showed that distribution characteristics of heavy metals (Pb, Cd, and Ni) in different parts of maize plants (immature stage) accumulated mostly in stems, with Pb mainly accumulated in roots (mature period), and Cd and Ni mostly in leaves. Except for the southeastern local region of this mining area, Mn and Cu possessed roughly similar spatial distribution characteristics. The results of partial correlation analysis indicated that Cu, Cd in the roots of the tested maize plants and Ni in soil may have antagonistic effects, Cu (soil)–Cu (stem) and Ni (soil)–Pb (stem) had a certain promoting effect. Besides, Cu, Pb, and Ni in soil promoted the absorption of Cu, Pb, and Ni in the leaves, whereas Cr and Pb in soil can promote the enrichment of Mn in maize grains. Our findings suggested that the concentrations of heavy metals in maize organs could be predicted accurately using the established models.  相似文献   

8.
The present study investigated the impact of cumulative irrigation with wastewater on the soil properties and, its health hazards on the consumers of cabbage plants at south Cairo Province, Egypt. Irrigation water, soil and cabbage plants were sample d from two polluted and other two unpolluted farms. The physicochemical properties of water and soil were analyzed and the growth parameters, as well as nutrients and heavy metals concentration in cabbage were investigated. In addition, the daily intake of metals (DIM) and health risk index (HRI) were estimated. Wastewater posed a decrease in the availability of N, P and K, but increases heavy metals in the soil solution. Cabbage stem and root lengths as well as the number of leaves and biomass were greatly reduced in the polluted farms. In addition, the photosynthetic pigments, carbohydrates and proteins were decreased under pollution stress. The concentration of most investigated metals in the leaves and roots were increased with translocation factor greater than one for Pb, Cd, As, Cr, Ni, Fe, and Co. The study revealed that the HRI exceeded one for Pb and Cd in polluted and unpolluted plants; and Fe in polluted ones. Irrigation with wastewater is not suitable for cabbage as it has health risks on humans due to accumulation of heavy metals. It worth noting that, the high ability of cabbage plants to accumulate Pb and Cd from both polluted and unpolluted soils should be taken into consideration when consuming this plant.  相似文献   

9.
The metal accumulation potential of Chenopodium album L. grown on various amendments of tannery sludge (TS) was studied after 60 days of sapling planted. The analysis of the results showed that the levels of pH, cation exchange capacity, organic carbon, organic matter and DTPA extractable metals (except Mn) of amendments increased by the addition of tannery sludge ratio. Shoot length of the plant increased by the addition of sludge, whereas, no marked change was observed in root length, fresh and dry weight of the plant. Accumulation of the metals in the plants was found in the order; Fe > Mn > Zn > Cr > Cu > Pb > Ni > Cd. Translocation of toxic metals (Cr, Pb, Cd) in different parts of the tested plant was found in the order; leaves > stems > roots. An increase in the photosynthetic pigments, carotenoid and leaf protein contents of the plants were found to increase with increase in sludge amendments. Correlation analysis between metal accumulation in the plants with DTPA extractable metals emphasized that Mn, Ni, Cr, Pb and Cd showed positive correlation (p < 0.05), whereas, Fe, Zn and Cu showed negative correlation. Transfer factor analysis emphasized that 10% TS amendments were suitable for phytoextraction of Cr. Overall analysis of the data exhibited that the plants may be used for phytoextraction of Cr from tannery waste contaminated soil as most of the metal was accumulated in harvestable part which is a matter of serious concern, whenever used for edible purposes.  相似文献   

10.
Plants can accumulate heavy metals when exposed to them at high levels. These metals can interfere with photosynthesis. Limited evidence suggests that increased synthesis of some heat-shock proteins (Hsps) may be a general plant response to metal stress, but the specific functions or structures protected by Hsps remain unidentified. Chloroplast small Hsps (smHsps) protect photosynthetic electron transport (Ph(et)) during heat, oxidative, and photoinhibitory stress, but it is not known if chloroplast smHsps are synthesized during metal stress and protect photosynthesis. Zea mays (corn) plants were exposed to varying soil concentrations of Cu, Ni, Pb, and Zn to determine if chloroplast smHsps are induced by heavy metals, if smHsps protect Ph(et), and any effects on chloroplast smHsp and photosynthesis. Net photosynthesis (Ph(n)) decreased with all metals-more so at higher levels and with longer exposures. Decreases in Ph(n) resulted from damage to photosynthetic metabolism, including Ph(et). All metals increased chloroplast smHsp content, which increased with time of exposure. In vitro, Ph(et) was protected from Pb (but not Ni) by purified chloroplast smHsp added to thylakoids. In vivo, Ph(n) was protected from Ni and Pb by increases in smHsp in a heat-tolerant Agrostis stolonifera selection genotype expressing additional chloroplast smHsps compared to a near-isogenic heat-sensitive genotype. These results are evidence that Hsps protect photosynthesis from heavy metals and are among the first to demonstrate specific functions protected by Hsps during metal stress.  相似文献   

11.
The objective of this study was to investigate metal detoxification in chronically exposed juvenile yellow perch (YP: Perca flavescens) and to field test the commonly assumed threshold toxicity model. Fish were collected from lakes located along a cadmium (Cd) and nickel (Ni) concentration gradient. Ambient dissolved metal concentrations were measured to evaluate exposure and total hepatic metal concentrations were determined as a measure of metal bioaccumulation. Hepatic metal partitioning among potentially metal-sensitive fractions (heat-denatured proteins, organelles) and detoxified metal fractions (metallothionein) was determined after differential centrifugation of YP liver homogenates. Major proportions of hepatic Cd were found in the heat-stable cytosolic peptides and proteins fraction (HSP; including metallothioneins), whereas Ni was mainly found in the potentially metal-sensitive heat-denaturable proteins fraction (HDP). For these chronically exposed fish there was no threshold exposure concentration below which binding of Cd or Ni to the heat-denaturable protein fraction or the organelle fraction did not occur. Metal detoxification was clearly incomplete and P. flavescens was subject to some metal-related stress, as evidenced notably by endocrine perturbations. Similar subcellular partitioning results were obtained when juvenile yellow perch were transferred from a reference lake to a Cd-contaminated lake and Cd accumulation was followed over time; there was no accumulation threshold below which Cd binding to the putative metal-sensitive fractions (HDP and organelles) did not occur. The presence of Cd and Ni in these fractions, even for low exposure concentrations and low hepatic accumulation, contradicts the threshold toxicity model that underpins metal toxicology theory and that is implicitly used in setting water quality guidelines for metals. Chronically exposed YP appear to have settled for a tradeoff between the cost of turning on their detoxification apparatus at full capacity, to completely suppress metal binding to metal-sensitive sites, and the alternative cost of allowing some binding of inappropriate metals to metal-sensitive sites.  相似文献   

12.
To gain a comprehensive understanding of the molecular mechanism of heavy metal accumulation in Brassica juncea, comparative proteomic approaches were used to analysis protein profiles in leaf tissues of 6-week-old B. juncea after exposure to 100 µM Ni. Proteomic analysis revealed that 61 protein spots showed 1.5-fold change in protein abundance after Ni exposure as compared to that of corresponding spots in control. Out of the 61 differentially expressed protein spots, 37 protein spots were ambiguously identified by matrix assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS). The majority of these identified proteins were found to be involved in sulphur metabolism, protection against oxidative stress, clearly indicated that heavy metal sequestration and antioxidant system were activated by Ni treatment. The induced expression of photosynthesis and ATP generation-related proteins were also observed in plants exposed to metals, suggesting the tolerance and accumulation is an energy-demanding process. The identification of these proteins in response to Ni can lead a deep understanding of heavy metal accumulation and tolerance in B. juncea.  相似文献   

13.
The potential of Eichornia crassipes to serve as a phytoremediation plant in the cleaning up of metals from contaminated coastal areas was evaluated in this study. Ten metals, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, V and Zn were assessed in water and the plant roots and shoots from the coastal area of Ondo State, Nigeria and the values were used to evaluate the enrichment factor (EF) and translocation factor (TF) in the plant. The critical concentrations of the metals were lower than those specified for hyperaccumulators thus classifying the plant as an accumulator but the EF and TF revealed that the plant accumulated toxic metals such as Cr, Cd, Pb and As both at the root and at the shoot in high degree, which indicates that the plant that forms a large biomass on the water surface and is not fed upon by animals can serve as a plant for both phytoextraction and rhizofiltration in phytoremediation technology.  相似文献   

14.
Cysteine synthase [O-acetyl-L-serine(thiol)lyase] catalyzes the final step for L-cysteine biosynthesis in plants. The tolerance of transgenic tobacco plants over-expressing cysteine synthase cDNA in cytosol (3F), chloroplasts (4F) and in both organelles (F1) was investigated towards heavy metals such as Cd, Se, Ni, Pb and Cu. The transgenic plants were significantly more tolerant than wild-type plants in agar medium containing Cd, Se and Ni. The F1 transgenic plants had a higher resistance than other transgenic lines towards these metals and could enhance accumulation of Cd in shoot. These results suggest that the transgenic plants over-expressing cysteine synthase both in cytosol and chloroplasts can be applicable to phyto-remediation of Cd from contaminated soils.  相似文献   

15.
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.  相似文献   

16.
A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.  相似文献   

17.
Eleocharis acicularis was exposed to different concentrations of In, Ag, Pb, Cu, Cd, and Zn in the laboratory to assess its capability in accumulating these metals. After 15 days, 477 mg/kg dry wt. of In was accumulated by the roots; concentrations of Ag, Pb, Cu, Cd, and Zn in the shoots were 326, 1120, 575, 195, and 213 mg/kg dry wt., respectively. The results indicate that E. acicularis has the ability to accumulate these metals from water, making it a good candidate species for phytoremediation and phytomining.  相似文献   

18.
The interaction between Cd and Zn in aquatic organisms is known to be highly variable. The purpose of this study was to use a subcellular compartmentalization approach to examine Cd and Zn interactions in the deposit-feeding polychaete Capitella capitata (sp. I). Laboratory-reared C. capitata were co-exposed to Cd (background or 50 μg Cd l− 1) and Zn (background or 86 μg Zn l− 1) with 109Cd and 65Zn as radiotracers for 1 week. After the 1-week uptake period, subsets of worms were allowed to depurate accumulated metals for an additional 1 week. Worms from both phases (uptake and loss) were then subjected to subcellular fractionation to determine the compartmentalization of metals as metal-sensitive fractions [MSF — organelles and heat-denaturable proteins (HDP)] and biologically detoxified metals [BDM — heat-stable proteins (HSP) and metal-rich granules (MRG)]. Uptake and loss of Cd and Zn in C. capitata at the whole body level were similar at bkgd-Cd/bkgd-Zn, with worms depurating the majority of accumulated metal (∼ 75% Cd and ∼ 64% Zn). When exposure of Zn or Cd was increased (bkgd-Cd/86-Zn; bkgd-Zn/50-Cd), uptake of background levels of Cd or Zn, respectively, was suppressed by ∼ 50%. These accumulated metals, however, were retained during the loss phase resulting in ∼ 40-50% greater Cd and Zn whole body tissue burdens than those of bkgd-Cd/bkgd-Zn worms. Beyond exhibiting similar patterns of uptake and loss at the whole body level, Cd and Zn behaved similarly at the subcellular level. Under background levels (bkgd-Cd/bkgd-Zn), after uptake, worms partitioned a majority of Cd (∼ 65%) and Zn (∼ 55%) to the HSP and organelles fractions. The HDP and MRG fractions contained less than ∼ 6% of both metals. Following depuration, at bkgd-Cd/bkgd-Zn, Cd and Zn were lost from all subcellular fractions; loss from HSP was the greatest contributor to whole body loss. When exposed to elevated concentrations of Zn or Cd, the suppression in uptake of bkgd-Cd or bkgd-Zn observed in whole body uptake was largely due to suppressions in the storage of Cd and Zn to HSP. These results suggest that Cd-Zn interactions reduce partitioning of both Cd and Zn to HSP, indicating that metal-binding proteins such as metallothioneins play a key role in these interactions.  相似文献   

19.
Metal determination in human tissues is the most common application of biological monitoring for screening, diagnosis and assessment of metal exposures and their risks. Various biopsy-materials may be used. This paper deals with the quantitative determination of Cd, Pb, Cr, Mn, Fe, Ni, Cu, and Zn concentrations in nails of male subjects exposed to these metals alongwith their respective controls, while working in locomotive, carriage and roadways workshops, and lead battery factories. The levels of Cd, Pb, Cr, Mn, Fe, Ni, Cu and Zn in fingernails, assayed by atomic absorption spectrophotometry, were compared with their respective controls by student ‘t’ test. All the obtained values were correlated to the personal and medical history of the subjects under study. Significantly high levels of Cd, Pb, Cr, Fe, Ni, Cu and Zn were present in smokers, compared to nonsmokers. The concentrations of Cd, Pb, Cr, Mn and Fe were not significantly high in vegetarian subjects. It was also observed that there is no contribution of liquor towards nail-metal concentration. Significant correlations were observed between skin disease and Cr, Mn, Fe, Cu; hypertension and Cd, Mn, Cu; mental stress and Cd, Pb, Mn, Ni, Cu, Zn; diabetes and Cr, Mn, Ni; chest pain and Pb; respiratory trouble and Cr, Mn, Fe, Ni, Zn; tuberculosis and Zn; acidity and Cd; and ophthalmic problems and Mn, Fe, Ni, and Zn  相似文献   

20.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号