首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many ecosystems receive a steady stream of non‐native species. How biotic resistance develops over time in these ecosystems will depend on how established invaders contribute to subsequent resistance. If invasion success and defence capacity (i.e. contribution to resistance) are correlated, then community resistance should increase as species accumulate. If successful invaders also cause most impact (through replacing native species with low defence capacity) then the effect will be even stronger. If successful invaders instead have weak defence capacity or even facilitative attributes, then resistance should decrease with time, as proposed by the invasional meltdown hypothesis. We analysed 1157 introductions of freshwater fish in Swedish lakes and found that species’ invasion success was positively correlated with their defence capacity and impact, suggesting that these communities will develop stronger resistance over time. These insights can be used to identify scenarios where invading species are expected to cause large impact.  相似文献   

2.
We examined the extent to which parental investment, as measured by brood defence, is determined by selection via life history in a short-lived bird, the great tit (Parus major). Great tit parents tending 1st and 2nd broods of the season were used to test five predictions of a cost/benefit model of brood defence based on the species average demography. The benefit was envisaged as the brood's contribution to a parent's fitness, and the cost as the potential loss if the defender dies in the act of defence; this loss was mirrored by Residual Reproductive Value plus a fraction of the brood dying as a consequence of the defender's death. Univariate and multivariate procedures were applied to six measures of defence response in 221 experimentally naive great tit pairs with nestlings. Stimuli consisted of a live raptor and a multi-species taped mobbing chorus (both of which triggered strong alarm), the latter alone, and a novel, visual stimulus inhibiting nest visits for some time. As predicted by the model, response strength and associated risk increased with (1) advancing time in the breeding season, (2) the age of young, and (3) the number of young in 2nd broods. The last finding, being non-trivial, is the strongest and the only unequivocal support for the notion that life-history has moulded parental investment also in a short-lived species; findings (1) and (2) could be alternatively accounted for by simply assuming that parents tailor their defence to environmental conditions permitting a new breeding episode. The model failed to predict the change of defence behaviour between 1st and 2nd broods. Instead, proximate factors coupled to the precise breeding area proved to be of prime importance in determining defence level, thereby falsifying the idea of a rigidly preprogrammed change of response level based on population parameter means. Instead, parents might gauge their defence to quality of young, as also allowed for in the model, or they may sometimes be constrained to display the full defence. As a by-product, the experiments permit us to narrow down the range of selective agents producing the male parent's stronger defence. The sex difference, being prevalent in 1st broods and abating in 2nd broods, indicates that the male, by its defence behaviour, not only invests in its offspring but also in its home range and/or its mate. The latter interpretation is supported most directly by the male's defence behaviour in 1st broods.  相似文献   

3.
In a seminal contribution, Fisher argued how distastefulness could incrementally evolve in a prey species that was distributed in family groups. Many defended prey species occur in aggregations, but did aggregation facilitate the evolution of defence as Fisher proposed or did the possession of a defence allow individuals to enjoy the benefits of group living? Contemporary theory suggests that it can work both ways: pre-existing defences can make the evolution of gregariousness easier, but gregariousness can also aid the evolution of defence and warning signals. Unfortunately, the key phylogenetic analyses to elucidate the ordering of events have been hampered by the relative rarity of gregarious species, which in itself indicates that aggregation is not a pre-requisite for defence. Like the underlying theory, experimental studies have not given a definitive answer to the relative timing of the evolution of defence and aggregation, except to demonstrate that both orderings are possible. Conspicuous signals are unlikely to have evolved in the absence of a defence and aggregated undefended prey are likely to be vulnerable to predation in the absence of satiation effects. It therefore seems most likely that defence generally preceded the evolution of both aggregation and signalling, but alternative routes may well be possible.  相似文献   

4.
Anionic antimicrobial peptides (AAMPs) have been identified in a wide variety of plant species with net charges that range between ?1 and ?7 and structures that include: extended conformations, α-helical architecture and cysteine stabilized scaffolds. These peptides commonly exist as multiple isoforms within a given plant and have a range of biological activities including the ability to kill cancer cells as well as phytopathogenic bacteria, fungi, pests, molluscs, and other predatory species. In general, the killing mechanisms underpinning these activities are poorly understood although they appear to involve attack on intracellular targets such as DNA along with compromise of cell envelope integrity through lysis of the cell wall via chitin-binding and/or permeabilisation of the plasma membrane via lipid interaction. It is now becoming clear that AAMPs participate in the innate immune response of plants and make a major contribution to the arsenal of defence toxins produced by these organisms to compensate for their lack of some defence mechanisms possessed by mammals, such as mobility and a somatic adaptive immune system. Based on their biological properties, a number of potential uses for plant AAMPs have been suggested, including therapeutically useful anticancer agents and novel antimicrobial compounds, which could be utilized in a variety of scenarios, ranging from the protection of crops to the disinfection of hospital environments.  相似文献   

5.
The floral composition of an inselberg archipelago in the southern Namib desert was investigated with regard to species diversity, geographic range of the species, habitat niches, seed dispersal abilities and plant herbivore defence. Although no endemic species were found, the archipelago forms an extreme and often isolated outlier for a large number of species in their distribution area. The hypothesis is proposed that the isolated extreme habitat allowed survival of relic populations due to low immigration rate and low competition. The high proportion of species favouring long-range dispersal might explain the lack of endemic species as well as the large contribution of species at their distributional boundary.  相似文献   

6.
Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non‐infected wild‐type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid‐ and jasmonic acid‐dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen‐induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.  相似文献   

7.
Social immunity refers to any immune defence that benefits others, besides the individual that mounts the response. Since contributions to social immunity are known to be personally costly, they are contributions to a public good. However, individuals vary in their contributions to this public good and it is unclear why. Here we investigate whether they are responding to contributions made by others with experiments on burying beetle (Nicrophorus vespilloides) families. In this species, females, males and larvae each contribute to social immunity through the application of antimicrobial exudates upon the carrion breeding resource. We show experimentally that mothers reduce their contributions to social immunity when raising large broods, and test two contrasting hypotheses to explain why. Either mothers are treating social immunity as a public good, investing less in social immunity when their offspring collectively contribute more, or mothers are trading off investment in social immunity with investment in parental care. Overall, our experiments yield no evidence to support the existence of a trade-off between social immunity and other parental care traits: we found no evidence of a trade-off in terms of time allocated to each activity, nor did the relationship between social immunity and brood size change with female condition. Instead, and consistent with predictions from models of public goods games, we found that higher quality mothers contributed more to social immunity. Therefore our results suggest that mothers are playing a public goods game with their offspring to determine their personal contribution to the defence of the carrion breeding resource.  相似文献   

8.
As the value of a limited resource such as a territory increases, animals should invest more in the defence of that resource. Because reproductive success often depends on the quality of a breeding territory, reproductive success or failure may alter the perceived value of territory and affect an animal's investment in territorial defence. We used common loons Gavia immer to test the hypothesis that animals with recent breeding success would show stronger territorial defence than those with no recent breeding success. Surprisingly, successful loons responded less, not more, to a simulated intrusion. However, birds with success in the previous season also increased their territorial response as the breeding season progressed. In conjunction with past data showing that recently successful loons experience an increase in conspecific intrusions on their territories, we interpret our data to suggest that loons with recent success offset the cost of increased intrusions by adopting a more efficient strategy for territorial defence (e.g. limiting investment in resource defence until the time of the season when it is most critical).  相似文献   

9.
In their struggle for life, plants can employ sophisticated strategies to defend themselves against potentially harmful pathogens and insects. One mechanism by which plants can increase their level of resistance is by intensifying the responsiveness of their immune system upon recognition of selected signals from their environment. This so-called priming of defence can provide long-lasting resistance, which is based on a faster and/or stronger defence reaction upon pathogen or pest attack. Priming can target various layers of induced defence that are active during different stages of the plant–attacker interaction. Recent discoveries have extended our knowledge about the mechanistic basis of defence priming and suggest that a primed defence state can be inherited epi-genetically from defence-expressing plants. In this review, we provide an overview of the latest insights about defence priming, ranging from early responses controlled by adjustments in hormone-dependent signalling pathways and availability of signal transduction proteins, to longer lasting mechanisms that involve possible regulation chromatin modification or DNA methylation.  相似文献   

10.
11.
The antimicrobial defence of Drosophila relies on cellular and humoral processes, of which the inducible synthesis of antimicrobial peptides has attracted interest in recent years. Another potential line of defence is the activation, by a proteolytic cascade, of phenoloxidase, which leads to the production of quinones and melanin. However, in spite of several publications on this subject, the contribution of phenoloxidase activation to resistance to infections has not been established under appropriate in vivo conditions. Here, we have isolated the first Drosophila mutant for a prophenoloxidase-activating enzyme (PAE1). In contrast to wild-type flies, PAE1 mutants fail to activate phenoloxidase in the haemolymph following microbial challenge. Surprisingly, we find that these mutants are as resistant to infections as wild-type flies, in the total absence of circulating phenoloxidase activity. This raises the question with regard to the precise function of phenoloxidase activation in defence, if any.  相似文献   

12.
Among the major bacterial secretions, outer membrane vesicles (OMVs) are significant and highly functional. The proteins and other biomolecules identified within OMVs provide new insights into the possible functions of OMVs in bacteria. OMVs are rich in proteins, nucleic acids, toxins and virulence factors that play a critical role in bacteria-host interactions. In this review, we discuss some proteins with multifunctional features from bacterial OMVs and their role involving the mechanisms of bacterial survival and defence. Proteins with moonlighting activities in OMVs are discussed based on their functions in bacteria. OMVs harbour many other proteins that are important, such as proteins involved in virulence, defence, and competition. Overall, OMVs are a power-packed aid for bacteria, harbouring many defensive and moonlighting proteins and acting as a survival kit in case of an emergency or as a defence weapon. In summary, OMVs can be defined as bug-out bags for bacterial defence and, therefore, survival.  相似文献   

13.
Cationic defence peptides show high therapeutic potential as antimicrobial and anticancer agents. Some of these peptides carry a C-terminal amide moiety which has been shown to be required for antimicrobial activity. However, whether this is a general requirement or whether C-terminal amidation is required for the anticancer activity of defence peptides is unclear. In response, this study analyses the toxicity of a series of C-terminally amidated defence peptides and their non-amidated isoforms to normal fibroblast cells, a variety of tumour cells and bacterial cells. The toxicities of these peptides to microbial and cancer cells were generally <200 μM. Peptides were either unaffected by C-terminal amidation or showed up to 10-fold decreases or increases in efficacy. However, these peptides all showed toxicity to normal fibroblast cells with levels (generally <150 μM) that were comparable to those of their antimicrobial and anticancer activities. In contrast to previous claims which have been based on analysis of single amidation events, the results of this study clearly show that the C-terminal amidation of defence peptides has a variable effect on their antimicrobial and anticancer efficacy and no clear effect on their selectivity for these cell types.  相似文献   

14.
1. Patches of Aleyrodes singularis nymphs are characterised by a distinctive phenotype composed of the nymphs' exuviae, which are piled on the nymph, and by a covering layer of wax secreted by the adults; these characteristics have been found to confer defensive properties against natural enemies. 2. In contrast to the behaviour typical for ovipositing females of other aleyrodids, A. singularis females tend to remain near the patch of their progeny throughout their development. These mothers were therefore tested to show whether they exhibited active defensive behaviour towards natural enemies, beyond their contribution to passive defence achieved through the secretion of wax on the immatures. 3. The behaviour of whitefly adults differed significantly when performed in the presence of conspecific adults from their behaviour in the presence of natural enemies (either a parasitoid or a predator). The differences were expressed in the mean time devoted to some behavioural events, the frequency at which events were performed, and the number of transitions between pairs of events. 4. Most of the recorded behavioural differences were associated with departure of the natural enemies, facilitating immature survival. 5. This is the first report of active behavioural changes that convey defence of immature offspring for the family Aleyrodidae. Conditions characterising these findings and their relationship with those in which parental care is expected are discussed.  相似文献   

15.
Summary The influence of risk of herbivory and its variation in time on the optimal defence strategy in plants is analysed by a simple optimization model. We contrast two possible defence strategies; a constitutive defence with an invariant defence level in time and an idealized induced defence, that is, a strategy that adjusts the defence level to the prevailing risk of herbivory. We also take into account effects of the efficiency of the defence. If there is no variation in risk of herbivory over years, constitutive and induced defence should have the same expected optimal defence level and both strategies are equally fit. The optimal defence level increases as the maximum fecundity and the adult to juvenile survival ratio of the plants both increase. If the risk of herbivory varies stochastically, the expected optimal level of the constitutive defence is either increased or unaffected by the variation, whereas the induced defence strategy may result in both higher or lower expected optimal defence levels as variance increases. This outcome is dependent on the mean risk of herbivory. It also depends on the defence efficiency, i.e. the shape (convex, concave or linear) of the defence function that relates the probability of survival if encountered by a herbivore to defence level. Thus, the defence level of plants interacting with variable herbivore populations cannot be unambiguously predicted unless the defence strategy (constitutive or induced), mean risk of herbivory, the form of the defence function and plant life history are known.  相似文献   

16.
Cooperatively breeding noisy miners (Manorina melanocephala) are well known in Australia for their persistent and very vocal group mobbing of heterospecifics. Here I investigated the nature of this extraordinary behaviour, in particular its role in nest defence, in a colour banded population of noisy miners in south‐east Queensland, Australia. I focused on two questions. First, did the intensity of mobbing vary according to factors such as the threat to the nest, or the ‘value’ of a clutch? Secondly, what role did group mobbing play in the success of a nest? To answer these questions, I experimentally manipulated the nest defence behaviour by placing one of three stuffed models near active noisy miner nests. The response of noisy miners to intruders was not indiscriminate. However, I found that the number of birds that mobbed a model did not simply reflect the potential threat posed. The response of noisy miners to raptors and other potential nest predators may have reflected their rarity as well as the threat posed. The number of mobbers did not vary with the age or size of a brood. In this study, the fate of nests was independent of the number of mobbers or visitors at nests. Finally, up to 80% of mobbers were never seen to make any other type of contribution to a nest, and many could not be related to the brood that they were ‘defending’. Hence, for some noisy miner ‘helpers’ the benefits that they accrued were probably not wholly dependent on the survival of the broods. I suggest that, in this gregarious species, mobbing behaviour at the nest may be a display of social status or individual quality. This hypothesis warrants further investigation.  相似文献   

17.
Mating has been widely reported to be a costly event for females. Studies indicate that female cost of mating in terms of fecundity and survivorship can be affected by their mates, leading to antagonistic coevolution between the sexes. However, as of now, there is no evidence that the female cost of mating in terms of immune defence is affected by their mates. We assess the effect of different sized males on antibacterial immune defence and reproductive fitness of their mates. We used a large outbred population of Drososphila melanogaster as the host and Serratia marcescens as the pathogen. We generated three different male phenotypes: small, medium and large, by manipulating larval densities. Compared to females mating with small males, those mating with large males had higher bacterial loads and lower fecundity. There was no significant effect of male phenotype on the fraction of females mated or copulation duration (an indicator of ejaculate investment). Thus, our study is the first clear demonstration that male phenotype can affect the cost of mating to females in terms of their antibacterial immune defence. Mating with large males imposes an additional cost of mating to females in terms of reduced immune defence. The observed results are very likely due to qualitative/quantitative differences in the ejaculates of the three different types of males. If the phenotypic variation that we observed in males in our study is mirrored by genetic variation, then, it can potentially lead to antagonistic coevolution of the sexes over immune defence.  相似文献   

18.
Animals and plants defend themselves against a variable community of biological enemies. We argue that the effectiveness of allocation to defence (the success of defence per unit allocation) may be expected to decrease as the diversity of attack types increases, and asked how the optimal allocation to defence covaries with the effectiveness of defence. Variation in effectiveness links optimal defence to coevolutionary processes; the prime characteristic of coevolutionary interactions is that they promote and maintain genetic variation in both hosts and their enemies, leading to variation in the effectiveness of defence. We present a simple model suggesting that as effectiveness decreases, the fitness benefit of defence disappears. In other words, when effectiveness is low, the optimal strategy is to tolerate damage. As effectiveness increases, the optimal allocation flips rapidly from no-defence (tolerance) to high allocation to defence, and then decreases at a decelerating pace as effectiveness increases. We conclude that diversifying coevolution, as it covaries with the effectiveness of defence, constrains the evolution of optimal defence strategies and may be a very important component in determining the optimal allocation to defence and variation in the success of defence as it is seen in the wild.  相似文献   

19.
Animal skin separates the inner world of the body from the largely hostile outside world and is actively involved in the defence against microbes. However, the skin is no perfect defence barrier and many microorganisms have managed to live on or within the skin as harmless passengers or as disease-causing pathogens. Microbes have evolved numerous strategies that allow them to gain access to the layers underneath the epidermis where they either multiply within the dermis or move to distant destinations within the body for replication. A number of viruses, bacteria and parasites use arthropod vectors, like ticks or mosquitoes, to deliver them into the dermis while taking their blood meal. Within the dermis, successful pathogens subvert the function of a variety of skin resident cells or cells of the innate immune system that rush to the site of infection. In this review several interactions with cells of the skin by medically relevant vector-borne pathogens are discussed to highlight the different ways in which these pathogens have come to survive within the skin and to usurp the defence mechanisms of the host for their own ends.  相似文献   

20.
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence‐related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant–plant interactions and plant–insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their ‘green note’ odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号