首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are 75 full length cytochrome P450 (CYP) genes known in the genome of the nematode Caenorhabditis elegans. The individual biological functions of the vast majority are mostly as yet unknown. Here the impact of cytochrome P450 isoforms on the metabolism of PCB52, an ortho-substituted, non-coplanar 2,2′,5,5′-tetrachlorbiphenyl, as a model PCB of these worldwide distributed pollutants is investigated. Organic extracts, isolated from treated worms and analyzed by GC/MS, contained two obvious PCB52-derived products which have been identified as C3-, C4- and/or C6-hydroxy-PCB52. Moreover, these hydroxylase reactions strictly required the functional expression of the NADPH-dependent cytochrome P450 reductase (CPR) encoding emb-8 gene, which was recently shown to be essential also for several other cytochrome P450-dependent enzymatic reactions. Multiple and subsequent single RNAi-gene silencing experiments, as well as the use of cyp-mutant strains, identified members of the CYP-14A subfamily and CYP-34A6 as the major isoforms contributing to PCB52 metabolism in C. elegans. In the gene-silenced worms and mutants, the reduction in formation of hydroxylated products ranged from 55% to 78%. These results demonstrate for the first time that C. elegans shares with mammals the capacity to produce CYP-dependent PCB metabolites and may thus facilitate future studies on biotransformation.  相似文献   

2.
3.
李梅  曾凡荣 《微生物学通报》2008,35(7):1107-1112
链霉菌中存在大量的细胞色素P450,它们在链霉菌次生代谢产物的生物合成和外来化学物质代谢过程中发挥了重要作用.本文综述了链霉菌中发现的细胞色素P450及其功能的研究进展,分析了存在的问题和研究应用前景.  相似文献   

4.
The genus Streptomyces produces about two-thirds of naturally occurring antibiotics and a wide array of other secondary metabolites, including antihelminthic agents, antitumor agents, antifungal agents, and herbicides. The newly completed genome sequence of the avermectin-producing bacterium Streptomyces avermitilis contains 33 cytochromes p450 (CYPs), many more than the 18 observed in Streptomyces coelicolor A3(2). Some of the likely metabolic functions are reported together with their genomic location and bioinformatic analysis. Seven entirely new CYP families were found together with close homologues of some forms observed in S. coelicolor A3(2). The presence of unusual CYP forms associated with conservons is revealed and of these, CYP157 forms in both S. avermitilis and S. coelicolor A3(2) deviate from the previously accepted rule for an EXXR motif within the K-helix of CYPs. Amongst this range of CYPs are forms associated with avermectin, filipin, geosmin, and pentalenolactone biosynthesis as well as unknown pathways of secondary metabolism.  相似文献   

5.
An immobilized system was developed to detect interactions of human cytochromes P450 (P450) with the accessory proteins NADPH-P450 reductase and cytochrome b(5) (b(5)) using an enzyme-linked affinity approach. Purified enzymes were first bound to wells of a polystyrene plate, and biotinylated partner enzymes were added and bound. A streptavidin-peroxidase complex was added, and protein-protein binding was monitored by measuring peroxidase activity of the bound biotinylated proteins. In a model study, we examined protein-protein interactions of Pseudomonas putida putidaredoxin (Pdx) and putidaredoxin reductase (PdR). A linear relationship (r(2)=0.96) was observed for binding of PdR-biotin to immobilized Pdx compared with binding of Pdx-biotin to immobilized PdR (the estimated K(d) value for the Pdx.PdR complex was 0.054muM). Human P450 2A6 interacted strongly with NADPH-P450 reductase; the K(d) values (with the reductase) ranged between 0.005 and 0.1muM for P450s 2C19, 2D6, and 3A4. Relatively weak interaction was found between holo-b(5) or apo-b(5) (devoid of heme) with NADPH-P450 reductase. Among the rat, rabbit, and human P450 1A2 enzymes, the rat enzyme showed the tightest interaction with b(5), although no increases in 7-ethoxyresorufin O-deethylation activities were observed with any of the P450 1A2 enzymes. Human P450s 2A6, 2D6, 2E1, and 3A4 interacted well with b(5), with P450 3A4 yielding the lowest K(d) values followed by P450s 2A6 and 2D6. No appreciable increases in interaction between human P450s with b(5) or NADPH-P450 reductase were observed when typical substrates for the P450s were included. We also found that NADPH-P450 reductase did not cause changes in the P450.substrate K(d) values estimated from substrate-induced UV-visible spectral changes with rabbit P450 1A2 or human P450 2A6, 2D6, or 3A4. Collectively, the results show direct and tight interactions between P450 enzymes and the accessory proteins NADPH-P450 reductase and b(5), with different affinities, and that ligand binding to mammalian P450s did not lead to increased interaction between P450s and the reductase.  相似文献   

6.
P450cin (CYP176A) is a rare bacterial P450 in that contains an asparagine (Asn242) instead of the conserved threonine that almost all other P450s possess that directs oxygen activation by the heme prosthetic group. However, P450cin does have the neighbouring, conserved acid (Asp241) that is thought to be involved indirectly in the protonation of the dioxygen and affect the lifetime of the ferric-peroxo species produced during oxygen activation. In this study, the P450cin D241N mutant has been produced and found to be analogous to the P450cam D251N mutant. P450cin catalyses the hydroxylation of cineole to give only (1R)-6β-hydroxycineole and is well coupled (NADPH consumed: product produced). The P450cin D241N mutant also hydroxylated cineole to produce only (1R)-6β-hydroxycineole, was moderately well coupled (31 ± 3%) but a significant reduction in the rate of the reaction (2% as compared to wild type) was observed. Catalytic oxidation of a variety of substrates by D241N P450cin were used to examine if typical reactions ascribed to the ferric-peroxo species increased as this intermediate is known to be more persistent in the P450cam D251N mutant. However, little change was observed in the product profiles of each of these substrates between wild type and mutant enzymes and no products consistent with chemistry of the ferric-peroxo species were observed to increase.  相似文献   

7.
Trypanosoma cruzi flavoproteins TcCPR-A, TcCPR-B and TcCPR-C are members of the NADPH-dependent cytochrome P-450 reductase family expressed in the parasite. Epimastigotes over-expressing TcCPR-B and TcCPR-C showed enhanced ergosterol biosynthesis and increased NADP+/NADPH ratio. Transgenic parasites with augmented ergosterol content presented a higher membrane order with a corresponding diminished bulk-phase endocytosis. These results support a significant role for TcCPR-B and TcCPR-C in the sterol biosynthetic pathway and to our knowledge for the first time reveals the participation of more than one CPR in this metabolic route. Notably, TcCPR-B was found in reservosomes while TcCPR-C localised in the endoplasmic reticulum. In addition, we suggest a different role for TcCPR-A, since its over-expression is lethal, displaying cells with an increased DNA content, aberrant morphology and severe ultrastructural alterations.  相似文献   

8.
Kim DH  Kim BG  Lee HJ  Lim Y  Hur HG  Ahn JH 《Biotechnology letters》2005,27(17):1291-1294
Plant cytochrome P450s interact with a flavoprotein, NADPH-cytochrome P450 reductase (CPR), to transfer electrons from NADPH. The gene for rice P450 reductase (RCPR) was cloned and expressed in Saccaromyces cerevisiae, where the specific activity of the expressed RPCR was 0.91 U/mg protein. When isoflavone synthase gene (IFS) from red clover, used as a model system of plant cytochrome P450, was co-expressed with RCPR in yeast, the production of genistein from naringein increased about 4.3-fold, indicating that the RCPR efficiently interacts with cytochrome P450 to transfer electrons from NADPH.  相似文献   

9.
Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to approximately 2.0A have been obtained.  相似文献   

10.
The genome of Caenorhabditis elegans contains 75 full length cytochrome P450 (CYP) genes whose individual functions are largely unknown yet. We tested the hypothesis that some of them may be involved in the metabolism of eicosapentaenoic acid (EPA), the predominant polyunsaturated fatty acid of this nematode. Microsomes isolated from adult worms contained spectrally active CYP proteins and showed NADPH-CYP reductase (CPR) activities. They metabolized EPA and with lower activity also arachidonic acid (AA) to specific sets of regioisomeric epoxy- and ω-/(ω-1)-hydroxy-derivatives. 17(R),18(S)-epoxyeicosatetraenoic acid was produced as the main EPA metabolite with an enantiomeric purity of 72%. The epoxygenase and hydroxylase reactions were NADPH-dependent, required the functional expression of the CPR-encoding emb-8 gene, and were inhibited by 17-ODYA and PPOH, two compounds known to inactivate mammalian AA-metabolizing CYP isoforms. Multiple followed by single RNAi gene silencing experiments identified CYP-29A3 and CYP-33E2 as the major isoforms contributing to EPA metabolism in C. elegans. Liquid chromatography/mass spectrometry revealed that regioisomeric epoxy- and hydroxy-derivatives of EPA and AA are endogenous constituents of C. elegans. The endogenous EPA metabolite levels were increased by treating the worms with fenofibrate, which also induced the microsomal epoxygenase and hydroxylase activities. These results demonstrate for the first time that C. elegans shares with mammals the capacity to produce CYP-dependent eicosanoids and may thus facilitate future studies on the mechanisms of action of this important class of signaling molecules.  相似文献   

11.
The prothoracic gland (PG) has essential roles in synthesizing and secreting a steroid hormone called ecdysone that is critical for molting and metamorphosis of insects. However, little is known about the genes controlling ecdysteroidogenesis in the PG. To identify genes functioning in the PG of the silkworm, Bombyx mori, we used differential display PCR and focused on a cytochrome P450 gene designated Cyp307a1. Its expression level positively correlates with a change in the hemolymph ecdysteroid titer. In addition, Drosophila Cyp307a1 is encoded in the spook locus, one of the Halloween mutant family members showing a low ecdysone titer in vivo, suggesting that Cyp307a1 is involved in ecdysone synthesis. While Drosophila Cyp307a1 is expressed in the early embryos and adult ovaries, the expression is not observed in the PGs of embryos or third instar larvae. These results suggest a difference in the ecdysone synthesis pathways during larval development in these insects.  相似文献   

12.
A Thr (or Ser) residue on the I-helix is a highly conserved structural feature of cytochrome P450 enzymes. It is believed to be indispensable as a proton delivery shuttle in the oxygen activation process. Previous work showed that P450cin (CYP176A1), which contains an Asn instead of the conserved Thr, is fully functional in the catalytic oxidation of cineole [D.B. Hawkes, G.W. Adams, A.L. Burlingame, P.R. Ortiz de Montellano, J.J. De Voss, J. Biol. Chem. 277 (2002) 27725-27732]. To determine whether the substitution of Asn for Thr is specific or general, the conserved Thr252 in P450cam (CYP101) was mutated to generate the T252N, T252N/V253T, and T252A mutants. Steady-state kinetic analysis of the oxidation of camphor by these mutants indicated that the T252N and T252N/V253T mutants have comparable turnover numbers but higher Km values relative to the wild-type enzyme. Spectroscopic binding assays indicate that the higher Km values reflect a decrease in the camphor binding affinity. Non-productive H2O2 generation was negligible with the T252N and T252N/V253T mutants, but, as previously observed, was dominant in the T252A mutant. Our results, and a structure model based on the crystal structures of the ferrous dioxygen complexes of P450cam and its T252A mutant, suggest that Asn252 can stabilize the ferric hydroperoxy intermediate, preventing premature release of H2O2 and enabling addition of the second proton to the distal oxygen to generate the catalytic ferryl species.  相似文献   

13.
The last reaction in the biosynthesis of brassinolide has been examined enzymatically. A microsomal enzyme preparation from cultured cells of Phaseolus vulgaris catalyzed a conversion from castasterone to brassinolide, indicating that castasterone 6-oxidase (brassinolide synthase) is membrane associated. This enzyme preparation also catalyzed the conversions of 6-deoxocastasterone and typhasterol to castasterone which have been reported to be catalyzed by cytochrome P450s, CYP85A1 of tomato and CYP92A6 of pea, respectively. The activities of these enzymes require molecular oxygen as well as NADPH as a cofactor. The enzyme activities were strongly inhibited by carbon monoxide, an inhibitor of cytochrome P450, and this inhibition was recovered by blue light irradiation in the presence of oxygen. Commercial cytochrome P450 inhibitors including cytochrome c, SKF 525A, 1-aminobenzotriazole and ketoconazole also inhibited the enzyme activities. The present work presents unanimous enzymological evidence that cytochrome P450s are responsible for the synthesis of brassinolide from castasterone as well as of castasterone from typhasterol and 6-deoxocastasterone, which have been deemed activation steps of BRs.  相似文献   

14.
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400 h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD = −3.1 MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5 °C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20–30 days Tmax ≥ 35 °C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r2 from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.  相似文献   

15.
By using genome in situ hybridization (GISH) on root somatic chromosomes of allotetraploid derived from the cross Gossypium arboreum × G. bickii with genomic DNA (gDNA) of G. bickii as a probe, two sets of chromosomes, consisting of 26 chromosomes each, were easily distinguished from each other by their distinctive hybridization signals. GISH analysis directly proved that the hybrid GarboreumxG. bickii is an allotetraploid amphiploid. The karyotype formula of the species was 2n = 4x = 52 = 46m (4sat) + 6sm (4sat). We identified four pairs of satellites with two pairs in each sub-genome. FISH analysis using 45S rDNA as a probe showed that the cross G. arboreumxG. bickii contained 14 NORs. At least five pairs of chromosomes in the G sub-genome showed double hybridization (red and blue) in their long arms, which indicates that chromatin introgression from the A sub-genome had occurred.  相似文献   

16.
The microbial model of mammalian drug metabolism, Cunninghamella elegans, has three cytochrome P450 reductase genes in its genome: g1631 (CPR_A), g4301 (CPR_B), and g7609 (CPR_C). The nitroreductase activity of the encoded enzymes was investigated via expression of the genes in the yeast Pichia pastoris X33. Whole cell assays with the recombinant yeast demonstrated that the reductases converted the anticancer drug flutamide to the nitroreduced metabolite that was also produced from the same substrate when incubated with human NADPH: cytochrome P450 reductase. The nitroreductase activity extended to other substrates such as the related drug nilutamide and the environmental contaminants 1-nitronaphthalene and 1,3-dinitronaphthalene. Comparative experiments with cell lysates of recombinant yeast were conducted under aerobic and reduced oxygen conditions and demonstrated that the reductases are oxygen sensitive.  相似文献   

17.
18.
CYP102s represent a family of natural self-sufficient fusions of cytochrome P450 and cytochrome P450 reductase found in some bacteria. One member of this family, named CYP102A1 or more traditionally P450BM-3, has been widely studied as a model of human P450 cytochromes. Remarkable detail of P450 structure and function has been revealed using this highly efficient enzyme. The recent rapid expansion of microbial genome sequences has revealed many relatives of CYP102A1, but to date only two from Bacillus subtilis have been characterized. We report here the cloning and expression of CYP102A5, a new member of this family that is very closely related to CYP102A4 from Bacillus anthracis. Characterization of the substrate specificity of CYP102A5 shows that it, like the other CYP102s, will metabolize saturated and unsaturated fatty acids as well as N-acylamino acids. CYP102A5 catalyzes very fast substrate oxidation, showing one of the highest turnover rates for any P450 monooxygenase studied so far. It does so with more specificity than other CYP102s, yielding primarily ω-1 and ω-2 hydroxylated products. Measurement of the rate of electron transfer through the reductase domain reveals that it is significantly faster in CYP102A5 than in CYP102A1, providing a likely explanation for the increased monooxygenation rate. The availability of this new, very fast fusion P450 will provide a great tool for comparative structure-function studies between CYP102A5 and the other characterized CYP102s.  相似文献   

19.
Fungi, particularly the white rot basidiomycetes, have an extraordinary capability to degrade and/or mineralize (to CO2) the recalcitrant fused-ring high molecular weight (?4 aromatic-rings) polycyclic aromatic hydrocarbons (HMW PAHs). Despite over 30 years of research demonstrating involvement of P450 monooxygenation reactions in fungal metabolism of HMW PAHs, specific P450 monooxygenases responsible for oxidation of these compounds are not yet known. Here we report the first comprehensive identification and functional characterization of P450 monooxygenases capable of oxidizing different ring-size PAHs in the model white rot fungus Phanerochaete chrysosporium using a successful genome-to-function strategy. In a genome-wide P450 microarray screen, we identified six PAH-responsive P450 genes (Pc-pah1-Pc-pah6) inducible by PAHs of varying ring size, namely naphthalene, phenanthrene, pyrene, and benzo(a)pyrene (BaP). Using a co-expression strategy, cDNAs of the six Pc-Pah P450s were cloned and expressed in Pichia pastoris in conjunction with the homologous P450 oxidoreductase (Pc-POR). Each of the six recombinant P450 monooxygenases showed PAH-oxidizing activity albeit with varying substrate specificity towards PAHs (3-5 rings). All six P450s oxidized pyrene (4-ring) into two monohydroxylated products. Pc-Pah1 and Pc-Pah3 oxidized BaP (5-ring) to 3-hydroxyBaP whereas Pc-Pah4 and Pc-Pah6 oxidized phenanthrene (3-ring) to 3-, 4-, and 9-phenanthrol. These PAH-oxidizing P450s (493-547 aa) are structurally diverse and novel considering their low overall homology (12-23%) to mammalian counterparts. To our knowledge, this is the first report on specific fungal P450 monooxygenases with catalytic activity toward environmentally persistent and highly toxic HMW PAHs.  相似文献   

20.
根据EST拼接的序列设计引物,利用RT-PCR和PCR方法,从陆地棉‘苏棉18’-cDNA和基因组DNA中分别克隆获得了GhZIP4基因片段.结果表明:(1)GhZIP4基因cDNA序列全长1 487 bp,包含1 269 bp ORF,编码422个氨基酸残基,其氨基酸序列具有典型的ZIP蛋白特征,预测具有8个跨膜结构域,第Ⅲ和第Ⅳ跨膜结构域间存在可变区,在可变区有2个富含His的结构域“HRHSHPHG”和“HSHGHGHD”.(2)氨基酸进化树分析显示,GhZIP4同拟南芥ZIP家族AtZIP4的相似性较高.(3)GhZIP4 DNA序列编码区全长1 778 bp,包含4个外显子和3个内含子,所有外显子/内含子交接点都遵从gt/ag剪接规则.(4)半定量分析显示,GhZIP4基因在茎中表达量最高,表明该基因有可能在某些金属离子地上部和根部的动态平衡分布过程中具有重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号