首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipopolysaccharide (LPS) of Hafnia alvei strain PCM 1195 was obtained by the hot phenol/water method. The O-specific polysaccharide was released by mild acidic hydrolysis and isolated by gel filtration. The structure of the O-specific polysaccharide was investigated by 1H, 13C, and 31P NMR spectroscopy, MALDI-TOF MS, and GC-MS, accompanied by monosaccharide and methylation analysis. It was concluded that the O-specific polysaccharide is composed of a hexasaccharide repeating units interlinked with a phosphate group: {→4-α-d-Glcp-(1→3)-α-l-FucpNAc-(1→3)-[α-d-Glcp-(1→4)]-α-d-GlcpNAc-(1→3)-α-l-FucpNAc-(1→4)-α-d-Glcp-(1→P}n.  相似文献   

2.
From the fruits of Rhamnus petiolaris two new flavonol-3-O-triosides were isolated and identified as rhamnazin-3-O-[α-l-rhamnopyranosyl (1 → 4)-α-l-rhamnopyranosyl (1 → 6)]-β-d-galactopyranoside and rhamnetin-3-O-α-l-rhamnopyranosyl (1 → 2)-α-l-rhamnopyranosyl (1 → 6)]-β-d-galactopyranoside, respectively.  相似文献   

3.
Two oligofurostanosides and two spirostanosides, isolated from a methanol extract of Asparagus adscendens (leaves), were characterized as 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-22α-methoxy-(25S)-furost-5-en-3β,26-diol (Adscendoside A), 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-(25S)-furost-5-en-3β,22α,26-triol-(Adscendoside B), 3-O-[{α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin A) and 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyr anosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin B), respectively. Adscendin B and Adscendoside A are the artefacts of Adscendoside B formed through hydrolysis and methanol extraction respectively.bl]  相似文献   

4.
Six flavonoids including two new flavones, luteolin 7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside), chrysoeriol-7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside) and a mixture of two pairs of diastereoisomeric flavonolignans, (±)-hydnocarpin 7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside)/(±)-hydnocarpin-D 7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside) with a 2:1 ratio were isolated from the whole plant of Mallotus metcalfianus Croizat, in addition to 10 known compounds. Their structures were evaluated on the basis of different spectroscopic methods, including extensive 1D and 2D NMR spectroscopy. Some extracts have moderate antimicrobial properties and interesting antiradical (DPPH) activity, as well as some compounds isolated from this species. Tannins were also identified in some active extracts.  相似文献   

5.
An ethanol extract of the aerial parts of Delphinium gracile DC. yielded five flavonol glycosides quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-caffeoyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (1), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (2), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(Z-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (3), kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (4) kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (5) in addition to 4-(β-d-glucopyranosyloxy)-6-methyl-2H-pyran-2-one (6) and rutin. Structures were elucidated by spectroscopic methods.  相似文献   

6.
Methylated anthocyanin glycosides were isolated from red Canna indica flower and identified as malvidin 3-O-(6-O-acetyl-β-d-glucopyranoside)-5-O-β-d-glucopyranoside (1), malvidin 3,5-O-β-d-diglucopyranoside (2), cyanidin-3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside (3), cyanidin-3-O-(6″-O-α-rhamnopyranosyl)-β-galactopyranoside (4), cyanidin-3-O-β-glucopyranoside (5) and cyanidin-O-β-galactopyranoside (6) by HPLC-PDA. Their structures were subsequently determined on the basis of spectroscopic analyses, that is, 1H NMR, 13C NMR, HMQC, HMBC, ESI-MS, and UV-vis. Compounds (1-4) were found to be in major quantity while compounds (5-6) were in minor quantity.  相似文献   

7.
Obtusilobinin and obtusilobin, two new saponins, have been isolated from the ethanolic extract of Anemone obtusiloba (Ranunculaceae). The structural elucidation of obtusilobinin and obtusilobin have showed them to be olean-12-ene-28-oic-3-O-(α-l-arabinofuranosyl 1→2) (α-l-rhamnopyranosyl 1→4)-β-d-glucopyranoside and olean-12-ene-28-oic-3-O-α-l-rhamnopyranosyl 2→1-O-α-l-arabinofuranoside, respectively.  相似文献   

8.
O-(2,4-Di-O-chloroacetyl-α-l-rhamnopyranosyl)-(1 → 2)-O-(3,4,6-tri-O-benzoyl-α-d-galactopyranosyl)-(1 → 3)-O-(2-acetamido-4,6-di-O-acetyl-2-deoxy-α-d-glycopyranosyl)-(1 → 3)-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (1) was synthesized in a stepwise manner, using the following monosaccharide units: 2-(trimethylsilyl)ethyl 2,4-di-O-benzoyl-α-l-rhamnopyranoside, 2-azido-4,6-O-benzylidene-3-O-chloroacetyl-2-deoxy-β-d-glycopyranosyl chloride, methyl 3,4,6-tri-O-benzoyl-2-O-(4-methoxybenzyl)-1-thio-β-d-galactopyranoside, and 2,4-di-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranosyl chloride. Compound 1 corresponds to a complete tetrasaccharide repeating unit of the O-specific polysaccharide of the lipopolysaccharide of Shigella dysenteriae type 1.  相似文献   

9.
An arabinoglucuronoxylan was extracted from the holocellulose of sugi (Cryptomeria japonica) wood with 10% KOH and subjected to hydrolysis by partially purified xylanase fraction from a commercial cellulase preparation “Meicelase”. Neutral sugars liberated were analyzed by size exclusion chromatography showing the presence of xylooligosaccharides up to xylohexaose. Aldouronic acids liberated were purified by preparative anion exchange chromatography. Their structures were identified by monosaccharide analysis, comparison of their volume distribution coefficients (Dvs) with those of the authentic samples in anion exchange chromatography and 1H and 13C NMR spectroscopy, resulting in the characterization of eight aldouronic acids including acids consisting of two 4-O-Me-α-D-GlcAp residues and 3-5 D-Xyl residues.
1.
Fr. 1-S1: (aldohexaouronic acid, MeGlcA3Xyl5), O-β-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)-(1 → 2)]-O-β-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
2.
Fr. 1-S2: (aldopentaouronic acid, MeGlcA3Xyl4), O-β-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)-(1 → 2)]-O-β-D-Xylp-(1 → 4)-O-β-Xylp-(1 → 4)-D-Xyl
3.
Fr. 2-S1: (aldotetraouronic acid, MeGlcA3Xyl3), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
4.
Fr. 3-S1: (aldotetraouronic acid, GlcA3Xyl3), O-(α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-Xylp-(1 → 4)-D-Xyl,
5.
Fr. 4-S1: (aldotriouronic acid, GlcA2Xyl2), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-D-Xyl
6.
Fr. 4-S2: (MeGlc4MeGlcA3Xyl5), O-β-D-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
7.
Fr. 6-S1: (MeGlcA4MeGlcA3Xyl4), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-[(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
8.
Fr. 7-S1: (MeGlcA3MeGlc2Xyl3), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-[(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-D-Xyl
Fr. 4-S2 was a new acidic oligosaccharide. The distribution pattern of these vicinal uronic acid units along the D-xylan chain was discussed.  相似文献   

10.
The main saponin from the fresh tuber of Dioscorea composita was dioscin and from the fermented material 3-O-[α-l-rhamnopyranosyl(1→4)-β-d-glucopyranosyl]diosgenin. The 13C NMR chemical shifts of saponins were used in the determination of their structure. No free sapogenin was isolated from the fresh tuber.  相似文献   

11.
From the methanol extract of the fruits of Asparagus adscendens sitosterol-β-d-glucoside, two spirostanol glycosides (asparanin A and B) and two furostanol glycosides (asparoside A and B) were isolated and characterized as 3-O-[β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-(25S)-5β-spirostan-3β-ol,3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl|} -26-O-(β- d-glucopyranosyl)-22α-methoxy-(25S)-5β-furostan-3β,26-diol and 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)- 25S)-5β-furostan-3β,22α, 26-triol, respectively.  相似文献   

12.
A glucuronic acid containing glycerolipid was isolated from the filamentous fungi Aspergillus fumigatus. This acidic glycolipid was extracted from the membrane of mycelium and purified by two successive chromatographic steps on DEAE-Sephadex and Silica columns. Chemical structural analysis was performed using methylation, gas-chromatography, gas-chromatography-mass spectrometry, nano-electrospray mass spectrometry and 1H/13C NMR spectra. The corresponding structure is a 3-(O-α-glucuronyl)-1,2-diacyl-sn-glycerol, where acyl chains are mainly C16:0, C18:0, C18:1, and C18:2. This α-GlcA-diacylglycerol is not present in fungal conidia. This acidic glycerolipid is described here for the first time in a fungal species. Two homologs of UDP-glucose dehydrogenase that convert UDP-glucose into UDP-glucuronic acid, are present in A. fumigatus genome, UGD1 and UGD2. Gene deletion showed that only UGD1 is essential for the biosynthesis of GlcA-DG. However, no particular phenotype has been observed in the Ugd1Δ mutant. Biological function of this acidic glycolipid remains unknown in A. fumigatus.  相似文献   

13.
Two steroidal saponins, floribundasaponins A and B isolated from the yams of Dioscorea floribunda, have been characterized as pennogenin-3-O-β-d-glucopyranoside and pennogenin-3-O-α-l-rhamnopyranosyl(1→4)-β-d-glucopyranoside.  相似文献   

14.
A facile synthetic procedure has been used to prepare one five-coordinate and four six-coordinate copper(II) complexes of 4′-chloro-2,2′:6′,2″-terpyridine (tpyCl) ligand with different counterions (, , , , and ) in high yields. They are formulated as [Cu(tpyCl-κ3N,N,N′′)(SO4-κO)(H2O-κO)] · 2H2O (1), trans-[Cu(tpyCl-κ3N,N,N″)(NO3-κO)2(H2O-κO)] (2), [Cu(tpyCl-κ3N,N,N″)2](BF4)2 (3), [Cu(tpyCl-κ3N,N,N″)2](PF6)2 (4) and [Cu(tpyCl-κ3N,N,N″)2](ClO4)2 (5) and versatile interactions in supramolecular level including coordinative bonding, O-H?O, O-H?Cl, C-H?F, and C-H?Cl hydrogen bonding, π-π stacking play essential roles in forming different frameworks of 1-5. It is concluded that the difference of coordination abilities of the counterions used and the experimental conditions codominate the resulting complexes with 1:1 or 1:2 ratio of metal and ligand.  相似文献   

15.
Preliminary screening of a series of medicinal plants, traditionally used in Tanzania, showed an IC50 of 15.6-31.2 μg/ml for the crude extract of the root of Ormocarpum kirkii S. Moore (Papilionaceae) against Plasmodium falciparum. A bioguided isolation was performed in order to isolate the active constituents. Twelve constituents were obtained and identified using NMR and MS data, and optical rotation measurements. The compounds comprised seven (I-3,II-3)-biflavonoids, three (I-3,II-3)-bi-4-phenyldihydrocoumarins, an isoflavanone and a C-glucosylated flavone. Six compounds, liquiritigeninyl-(I-3,II-3)-naringenin, apigeninyl-(I-3,II-3)-naringenin, 7-O-β-D-glucopyranosylchamaejasmin, (3R,4S,3″R,4″S)-5,5″-di-O-methyldiphysin, 7-O-β-D-glucopyranosyldiphysin, and 4″-hydroxydiphysolone, were isolated in addition to six known components. The compounds were evaluated for antimicrobial activity in a broad screening panel, including P. falciparum. Seven of these showed antiplasmodial activity; isochamaejasmin being the most active with an IC50 of 7.3 ± 3.8 μM, but the selectivity was rather limited. Thus, these constituents may contribute, at least in part, to the antimalarial use of O. kirkii in traditional medicine.  相似文献   

16.
Three oleanane-type saponins, 3-O-β-d-glucopyranosylechinocystic acid 28-O-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-α-l-rhamnopyranosyl ester (1), 3-O-β-d-glucopyranosylechinocystic acid 28-O-α-l-arabinopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-α-l-rhamnopyranosyl ester (2), 3-O-β-d-glucopyranosylcaulophyllogenin 28-O-β-d-apiofuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[β-d-apiofuranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-α-l-rhamnopyranosyl ester (3) were isolated from the whole plant of Arenaria montana. Their unusual structures for the Caryophyllaceae family were established mainly by 2D NMR techniques and mass spectrometry.  相似文献   

17.
A study of an EtOH extract obtained from the roots of the Madagascan plant Terminalia tropophylla H. Perrier (Combretaceae) led to isolation of the oleanane-type triterpenoid saponin 1, the lignan derivative 2, and the two known saponins arjunglucoside I (3) and sericoside (4). The structures of compounds 1 (terminaliaside A) and 2 (4′-O-cinnamoyl cleomiscosin A) were elucidated using 1D and 2D NMR experiments and mass spectrometry. Compound 1 showed antiproliferative activity against the A2780 human ovarian cancer cell line with an IC50 value of 1.2 μM.  相似文献   

18.
The structures of four new saponins, polyphyllin C, D, E and F, isolated from the tubers of Paris polyphylla have been elucidated as diosgenin-3-O-α-l-rhamnopyranosyl(1→3)-β-d-glucopyranoside, diosgenin-3-O-α-l-rhamnopyranosyl(1→3)- [α-l-arabinofuranosyl(1→4)]-β-d-glucopyranoside, diosgenin-3-O-α-l-rhamnopyranosyl(1→2)-α-l-rhamnopyranosyl (1→4)[α-l-rhamnopyranosyl(1→3)]-β-d-glucopyranoside and diosgenin-3-O-α-l-rhamnopyranosyl(1→4)[α-l- rhamnopyranosyl(1→3)][β-d-glucopyranosyl(1→2)]-α-l-rhamnopyranoside, respectively, on the basis of chemical and spectral data.  相似文献   

19.
Four flavone glycosides isolated from extracts of the leaves of Robinia pseudoacacia (Leguminosae) were characterised by spectroscopic and chemical methods as the 7-O-β-d-glucuronopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranosides of acacetin (5,7-dihydroxy-4′-methoxyflavone), apigenin (5,7,4′-trihydroxyflavone), diosmetin (5,7,3′-trihydroxy-4′-methoxyflavone) and luteolin (5,7,3′,4′-tetrahydroxyflavone). Assignment of glycosidic 1H and 13C resonances in their NMR spectra was facilitated by 2JHC correlations detected using the H2BC (heteronuclear two-bond correlation) pulse sequence. Spectroscopic analysis of two known triglycosides, acacetin 7-O-β-d-glucopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside (previously unrecorded from this species) and acacetin 7-O-β-d-xylopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside (‘acacetin trioside’), enabled inconsistencies in the literature relating to these structures to be resolved. Comparison of the flavonoid chemistry of leaves and flowers of R. pseudoacacia using LC-UV and LC-MS showed that flavone 7-O-glycosides, particularly of acacetin, predominated in the former, whereas the latter comprised mainly flavonol 3,7-di-O-glycosides, including several examples new to this species. Tissue dependent differences in flavonoid chemistry were also evident from the glycosylation patterns of the compounds.  相似文献   

20.
The debarked roots of Tamarix nilotica contain the furanofuran lignan (±)-syringaresinol so far not reported from the Tamaricaceae, and the new natural product ellagic acid 3,3′-dimethyl ether 4-O-β-d-glucopyranoside. Further constituents were isoferulic acid, gallic acid, dehydrodigallic acid and ellagic acid. The structure of the isolated compounds was determined mostly by 1H and 13C NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号