首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H2O2-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.  相似文献   

2.
Oxidative damage and antioxidant properties have been studied in Perna viridis subjected to short-term exposure to Hg along with temperature (72h) and long-term temperature exposures (14 days) as pollution biomarkers. The elevated thiobarbituric acid reactive substances (TBA-RS) levels observed in gills and digestive gland under exposure to Hg, individually and combined with temperature, as also long-term temperature stress have been assigned to the oxidative damage resulting in lipid peroxidation (LPX). Increased activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase (GST) both in gills and digestive glands under long-term exposures to temperatures are more prominent to heat rather than cold stress suggesting activation of physiological mechanism to scavenge the ROS produced during heat stress. Also decreased values of reduced glutathione (GSH) on long exposures to temperature stress indicate utilisation of this antioxidant, either to scavenge oxiradicals or act in combination with other enzymes, was more than its production capacity under heat stress. The results suggest that temperature variation does alter the active oxygen metabolism by modulating antioxidant enzyme activities, which can be used as biomarker to detect sublethal effects of pollution.  相似文献   

3.
Nasturtium officinale R. Br. (Brassicaceae) has been used as a home remedy by the people of south eastern (SE) region of Iran as a medicinal plant. This therapeutical application has been attributed to Nasturtium officinale (N. officinale) antioxidant capacity which is mostly tested by means of cell-free assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). In addition, the antioxidant effect of N. officinale extract has been investigated in hypercholesterolaemic rats in vivo. The results revealed that the extract has notable scavenging activity against DPPH radicals as well as potent reducing power in FRAP assay. Intragastric administration of N. officinale (500 mg/kg body weight per day) to groups of hypercholesterolaemic rats for 30 days lowered their blood total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels by 37, 44 and 48%, respectively. However, the blood high density lipoprotein cholesterol (HDL-C) levels in the same treated rats increased by 16%. To evaluate the mechanism(s) of action, we studied the antioxidative potential of N. officinale extract in terms of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and also the level of reduced glutathione (GSH) in the liver tissues. In addition, hepatic tissue malondialdehyde level (MDA, an index of lipid peroxidation) was also determined. Under hypercholesterolaemic condition, hepatic MDA was increased. Moreover, our data indicated GSH depletion along with significant reduction in the activities of CAT and SOD in rats fed high-fat diet rats. On the other hand, significant elevation in the activities of GPx and GR were seen in the same group of rats. Treatment of hypercholesterolaemic rats with N. officinale extract significantly increased the GSH level along with enhanced CAT and SOD activities in liver tissues. Furthermore, N. officinale extract significantly decreased hepatic MDA as well as GPx and GR activities in plant-treated rats. Based on our data, it can be concluded that N. officinale has a high hypolipidaemic activity and this may be attributed to its antioxidative potential.  相似文献   

4.
5.
Schistosoma mansoni (S. mansoni) eggs trapped in the host liver elicit a chain of oxidative processes that may be, at least in part, responsible for the pathology and progression of fibrosis associated with schistosomal hepatitis. This study was designed to assess the protective effect of the antioxidant coenzyme-Q10 (Co-Q10) against experimental S. mansoni-induced oxidative stress in the liver, and its potential role as an adjuvant to praziquantel (PZQ) therapy. The oxidative stress and overall liver function were improved under Co-Q10 therapy as evidenced by significant reduction in oxidative stress markers and preservation of antioxidant factors. Liver fibrosis was also reduced with a positive impact on liver function. Moreover, addition of Co-Q10 to PZQ therapy caused: significant reduction of liver egg load, significant improvement of the redox status, and lastly decreased liver fibrosis.  相似文献   

6.
Chemical investigation of the combined dichloromethane and ethyl acetate extracts of the fruits of Artocarpus nobilis, furnished four new geranylated phenolic constituents, 2,4,4'-trihydroxy-3-[(2E)-5-methoxy-3,7-dimethylocta-2,6-dienyl]chalcone (4), 1-(3,4-dihydro-3,5-dihydroxy-2-methyl-2-(3-methyl-2-butenyl)-2H-1-benzopyran-6-yl-3-(4-hydroxyphenyl)-2(E)-propen-1-one (5), 8-geranyl-3',4',7-trihydroxyflavone (8), 3'-geranyl-4',5,7-trihydroxyflavanone (9), together with known related compounds, xanthoangelol (1), xanthoangelol B (2), 3-geranyl-2,3',4,4'-tetrahydroxychalcone (3), lespeol (6), 8-geranyl-4',7-dihydroxyflavanone (7), and isonymphaeol-B (10). Compounds 3, 8 and 10 showed strong antioxidant activity against DPPH radical by spectrophotometric method.  相似文献   

7.
Liu M L  Cao B  Zhou S H  Liu Y B 《农业工程》2012,32(3):150-155
Caryopteris mongolica is a dwarf shrub mainly found in grassland and desert areas of north-west China, and which can survive severe environmental stress. This study aimed to assess the responses of the flavonoid pathway to UV-B radiation treatments and its correlation to the lipid peroxide and antioxidant systems in C. mongolica. In UV-B radiation experiments, plants were exposed to UV-B radiation treatments with a intensity of 30 J/s for 1, 4 and 24 h, respectively. A control group without UV-B radiation treatment was also used. The chlorophyll fluorescence parameters, contents of chlorophyll and carotenoid, levels of lipid peroxidation, activities of antioxidant system enzymes, accumulations of total flavonoids and anthocyanins, and activities of phenylalanine ammonialyase (PAL) and chalcone isomerase (CHI) under different UV-B radiation treatments were investigated. The correlations between products and key enzymes in the flavonoid pathway and the lipid peroxide and antioxidant systems were also analyzed. The results showed that chlorophyll fluorescence parameters decreased within 24 h of treatment. The chlorophyll contents decreased within 4 h and remained stable after 24 h. Carotenoid content significantly increased. The level of MDA, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD) and the contents of total flavonoids and anthocyanidins increased, while catalase (CAT) activity decreased under UV-B stress. The activities of PAL and CHI also increased with the increased content of total flavonoids. The flavonoid products anthocyanidins had a significant positive correlation with MDA level, as well as the activities of antioxidant enzyme SOD. In conclusion, UV-B radiation induced the degradation of photosynthetic pigments and decreased photochemical efficiency of Photosystem II; increased the contents of MDA, total flavonoids and anthocyanidins; and also enhanced activities of antioxidant enzymes (SOD, APX and POD) and key enzymes (PAL and CHI) in the flavonoid pathway in C. mongolica. Thus, we speculate that the flavonoid pathway were involved in the regulation of stress resistance in C. mongolica.  相似文献   

8.
An analysis of the components of the antioxidant defence system in exponential and stationary growth phases of filamentous fungus Phycomyces blakesleeanus and the response to the oxidative stress hydrogen peroxide were performed. There is a strong positive correlation between mycelial antioxidant capacity and the contents of gallic acid, d-erythroascorbate (d-EAA) or d-erythroascorbate monoglucoside (d-EAAG). These secondary metabolites are specifically synthesized by this fungus and reach maximal values in the stationary growth phase, suggesting that they can play some role in the antioxidant defence system of this fungus. There is a differential expression of the two more notable antioxidant activities, catalase (CAT) and superoxide dismutase (SOD), depending of the growth stage of P. blakesleeanus, CAT being expressed in the exponential and SOD in the stationary phase. Phycomyces blakesleeanus showed a high resistance to the oxidative stress caused by H2O2 (50 and 200 mM) which was higher in exponential phase. This higher resistance can be explained by the presence of CAT, glutathione peroxidase (GPx), and the probable contribution of glutathione-S-transferase (GST) and high levels of reduced form of glutathione (GSH). The transition to stationary phase was accompanied with a higher physiological oxidative damage illustrated by the higher protein carbonylation. In this growth stage the resistance of the fungus to the oxidative stress caused by H2O2 could be explained by the presence of SOD, GPx, and the probable contribution of GST as well as of secondary metabolites, mainly d-EAA and d-EAAG. These results highlight a specific response to oxidative stress by H2O2 depending on the growth phase of P. blakesleeanus.  相似文献   

9.
10.
This study investigated the effects of Onosma armeniacum K. (Boraginaceae) root extract (AR-1) on ethanol-induced stomach ulcers, and on some oxidant and antioxidant parameters, in stomach tissue in rats. The results obtained showed that AR-1 significantly inhibited ethanol-induced ulcers at 25, 50, 100 and 200 mg/kg doses. We found that 50, 100 and 200 mg/kg doses of AR-1 inhibited ulcers more effectively than did ranitidine. AR-1 at doses of 25, 50, 100 and 200 mg/kg significantly prevented the decrease in total glutathione (tGSH) level which occurs in damaged stomach tissues of rats given ethanol (control group). Only a 100 mg/kg dose of AR-1 significantly increased the glutathione S-transferase (GST) level in stomach tissue compared to the control. All doses of AR-1 except the 25 mg/kg dose eliminated the decrease in the superoxide dismutase (SOD) level in the stomach tissue of rats given ethanol. While all doses of AR-1 decreased malondialdehyde (MDA) levels significantly; all doses AR-1 except 25 mg/kg decreased myeloperoxidase (MPO) levels significantly compared to the control. The effect of AR-1 on catalase (CAT) activity was insignificant at all doses. AR-1 significantly increased nitric oxide (NO) levels at 50, 100 and 200 mg/kg doses compared to the control. Our results indicate that the protection of some antioxidant mechanisms and the inhibition of some oxidant mechanisms have a role in AR-1's antiulcer effect mechanism.  相似文献   

11.
研究干旱胁迫对平邑甜茶(Malus hupehensis)和楸子(Malus prunifolia)根系水力结构及其PV曲线水分参数的影响.设定正常与干旱2种水分处理,对2种苹果砧木进行氯化汞-巯基乙醇处理和压力室-容积(PV)曲线测定试验,并利用高压流速仪(HPFM),测定平邑甜茶和楸子根系水力结构.结果表明:随着水分胁迫的加重,平邑甜茶和楸子的根系导水率、根系叶比导水率、根系茎比导水率出现减少趋势.在适宜水分和重度干旱条件下,平邑甜茶根系叶比导水率分别为楸子根系叶比导水率的95%和92%,平邑甜茶根系茎比导水率分别为楸子根系茎比导水率的52%和62%,楸子与平邑甜茶相比在根系茎比导水率和根系叶比导水率上出现增加趋势.干旱胁迫可能会导致水通道蛋白的活性受到抑制,致使其根系导水率出现降低,继而导致了地上部分气体交换受到影响.严重干旱时,楸子与平邑甜茶相比可能具有更大的水孔蛋白表达量来抵御干旱胁迫.在2种水分条件下,楸子的初始质壁分离时的渗透势(ψstlp)、饱和含水时的渗透势(Ψssal)、初始质壁分离时的相对水含量(RWCtlp)、初始质壁分离时的相对渗透水含量(ROWCtlp)、组织细胞总体弹性模量(ε')值与平邑甜茶相比较均处于较低水平,束缚水含量(Va)值处在较高水平.对PV曲线水分参数进行隶属函数综合评价得出的△值为楸子大于平邑甜茶,平邑甜茶和楸子之间b值差异不明显.在适宜水分和重度干旱条件下楸子所体现出的输水策略优于平邑甜茶.PV曲线水分参数同苹果砧木根系的水力结构一样能够随着植物所处的环境做出相应的调整.对于PV曲线水分参数研究发现,楸子在膨压保持方面与平邑甜茶相比,其抗旱性优于平邑甜茶.  相似文献   

12.
The effect of a bacteriocin of Enterococcus on the oxidative metabolism of sensitive bacteria was investigated through the detection of oxidative stress by chemiluminescence (CL). The bacteriocin named EntB was purified to study the action on Staphylococcus aureus isolated from cosmetic. Chromatographic separation of EntB indicated different states of oligomerization with molecular weights multiple of 12,000Da monomeric form. The monomer purified by ion exchange was studied in its capacity to affect the oxidative metabolism of S. aureus, which showed increase of anion superoxide (O(2)(-)) when incubated with EntB. This effect was compared to the action of EntB on leukocytes as an assay of toxicity. EntB did not generate significant oxidative stress in leukocytes. Pyoverdin, a leukotoxic pigment of Pseudomonas fluorescens, was taken as reference, and it was found that this pigment caused similar oxidative stress to EntB in S. aureus; however, pyoverdin generated high production of anion superoxide (O(2)(-)) in leukocytes, while EntB did not increase the level of O(2)(-).  相似文献   

13.
In this paper, we report studies on morphological, phytochemical, and biological aspects of a population belonging to Aconitum anthora L. Two compounds, quercetin 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (1) and kaempferol 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (2), together with two known flavonol glycosides (3-4) were isolated and identified from A. anthora. The antioxidant activity of the four identified flavonoids was screened by three in vitro tests.  相似文献   

14.
Parental effort is usually associated with high metabolism that could lead to an increase in the production of reactive oxidative species giving rise to oxidative stress. Since many antioxidants involved in the resistance to oxidative stress can also enhance immune function, an increase in parental effort may diminish the level of antioxidants otherwise involved in parasite resistance. In the present study, we performed brood size manipulation in a population of great tits (Parus major) to create different levels of parental effort. We measured resistance to oxidative stress and used a newly developed quantitative PCR assay to quantify malarial parasitaemia. We found that males with an enlarged brood had significantly higher level of malarial parasites and lower red blood cell resistance to free radicals than males rearing control and reduced broods. Brood size manipulation did not affect female parasitaemia, although females with an enlarged brood had lower red blood cell resistance than females with control and reduced broods. However, for both sexes, there was no relationship between the level of parasitaemia and resistance to oxidative stress, suggesting a twofold cost of reproduction. Our results thus suggest the presence of two proximate and independent mechanisms for the well-documented trade-off between current reproductive effort and parental survival.  相似文献   

15.
Extended exposure of Escherichia coli to temperatures above and below their growth optimum led to significant changes in oxidant production and antioxidant defense. At 20 °C an increase in the intracellular H2O2 concentration and oxidized glutathione (GSSG) level was observed against a background of low levels of reduced glutathione (GSH) and decreased catalase and glutathione reductase (GOR) activities. The intracellular H2O2 and GSSG concentrations had minimal values at 30 and 37 °C, but rose again at 42 °C, suggesting that oxidative processes were intensified at high temperatures. An increase in temperature from 20 to 42 °C led to an elevation in the oxygen respiration rate and superoxide production; a 5-fold increase in the intracellular GSH concentration and in the GSH:GSSG ratio occurred simultaneously. Catalase HPI and GOR activities were elevated 4.4- and 1.5-fold, respectively. Prolonged exposure to sublethal temperatures facilitated an adaptation to subsequent oxidative stress produced by the addition of H2O2.  相似文献   

16.
17.
The present study was undertaken to examine the attenuative effect of Piper betle leaf extract (PBE) against cadmium (Cd) induced oxidative hepatic dysfunction in the liver of rats. Pre-oral supplementation of PBE (200 mg/kg BW) treated rats showed the protective efficacy against Cd induced hepatic oxidative stress. Oral administration of Cd (5 mg/kg BW) for four weeks to rats significantly (P > 0.05) elevated the level of serum hepatic markers such as serum aspartate transaminase (AST), serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), bilirubin (TBRNs), oxidative stress markers viz., thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), protein carbonyls (PC) and conjugated dienes (CD) and significantly (P > 0.05) reduced the enzymatic antioxidants viz., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) and non-enzymatic antioxidants Viz., reduced glutathione (GSH), total sulfhydryls (TSH), vitamin C and vitamin E in the liver. Pre-oral supplementation of PBE (200 mg/kg BW) in Cd intoxicated rats, the altered biochemical indices and pathological changes were recovered significantly (P > 0.05) which showed ameliorative effect of PBE against Cd induced hepatic oxidative stress. From the above findings, we suggested that the pre-administration of P. betle leaf extract exhibited remarkable protective effects against cadmium-induced oxidative hepatic injury in rats.  相似文献   

18.
Extracts from apple fruit (cultivar "Granny Smith") inhibited the cell-wall degrading polygalacturonase (PG) activity of Colletotrichum lupini, the causal agent of anthracnose on lupins, as well as Aspergillus niger PG. Southern blot analysis indicated that this cultivar of apple has a small gene family of polygalacturonase inhibiting proteins (pgips), and therefore heterologous expression in transgenic tobacco was used to identify the specific gene product responsible for the inhibitory activity. A previously isolated pgip gene, termed Mdpgip1, was introduced into tobacco (Nicotiana tabacum) by Agrobacterium-mediated transformation. The mature MdPGIP1 protein was purified to apparent homogeneity from tobacco leaves by high salt extraction, clarification by DEAE-Sepharose and cation exchange HPLC. Purified MdPGIP1 inhibited PGs from C. lupini and PGs from two economically important pathogens of apple trees, Botryosphaeria obtusa and Diaporthe ambigua. It did not inhibit the A. niger PG, which was in contrast to the apple fruit extract used in this study. We conclude that there are at least two active PGIPs expressed in apple, which differ in their charge properties and ability to inhibit A. niger PG.  相似文献   

19.
Glucose effects on the vegetative growth of Dictyostelium discoideum Ax2 were studied by examining oxidative stress and tetrahydropteridine synthesis in cells cultured with different concentrations (0.5X, 7.7 g L-1; 1X, 15.4 g L-1; 2X, 30.8 g L-1) of glucose. The growth rate was optimal in 1X cells (cells grown in 1X glucose) but was impaired drastically in 2X cells, below the level of 0.5X cells. There were glucose-dependent increases in reactive oxygen species (ROS) levels and mitochondrial dysfunction in parallel with the mRNA copy numbers of the enzymes catalyzing tetrahydropteridine synthesis and regeneration. On the other hand, both the specific activities of the enzymes and tetrahydropteridine levels in 2X cells were lower than those in 1X cells, but were higher than those in 0.5X cells. Given the antioxidant function of tetrahydropteridines and both the beneficial and harmful effects of ROS, the results suggest glucose-induced oxidative stress in Dictyostelium, a process that might originate from aerobic glycolysis, as well as a protective role of tetrahydropteridines against this stress. [BMB Reports 2013; 46(2): 86-91]  相似文献   

20.
The methionine sulfoxide reductases MsrA and MsrB reduce Met(O) to Met in epimer-specific fashion. In Drosophila, the major ecdysone induced protein is MsrA, which is regulated by the EcR-USP complex. We tested Kc cells for induction of MsrA, MsrB, EcR, and CAT by ecdysone and found that MsrA and the EcR were induced by ecdysone, but MsrB and CAT were not. When we tested for resistance to 20mM H2O2 toxicity, viability of Kc cells was reduced 3-fold. Pretreatment with 0.2 microM ecdysone for 48 h prior to exposure to H2O2, increased viability to 77% of controls. The EcR-deficient L57-3-11 knockout line was not responsive to ecdysone, and H2O2 resistance of both control and ecdysone-treated L57-3-11 cells was similar to that of the ecdysone-untreated Kc cells. These results show that hormonal regulation of MsrA is implicated in conferring protection against oxidative stress in the Drosophila model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号