首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new sesquiterpene dialdehydes, cinnamate 7 and coumarate 8, were isolated from the fruits of Pseudowintera colorata. The known sesquiterpene dialdehydes polygodial 1 and 9-deoxymuzigadial 2 were also found in these fruits, at 5% w/w compared to 0.5% in the leaves. Fruits of Pseudowintera axillaris contained no sesquiterpene dialdehyde cinnamates, even though these are present in the leaves, but did contain prenylated flavanones 1113. Compounds 7 and 8 are further examples of the rare sesquiterpene dialdehyde cinnamate combination, found exclusively in the family Winteraceae. This is the first report of the uncommon prenylated flavanones in Winteraceae.  相似文献   

2.
One secobutanolide, two butanolides and six drimane sesquiterpenoids were isolated from the bark and leaves of Zygogynum pancheri and Zygogynum acsmithii (Winteraceae) along with six known drimanes, isodrimanial, 1β-O-p-methoxy-E-cinnamoyl-bemadienolide, 7-ketoisodrimenin, drimenin, polygodial and 1β-E-cinnamoyl-6α-hydroxypolygodial. Their structures were elucidated through analysis of spectroscopic data. Drimane sesquiterpenoids with a dialdehyde function exhibited significant inhibitory activities in the in vitro cytotoxic assays against KB, HL60 and HCT116 cancer cell lines.  相似文献   

3.
Four new (1-4) and 13 known (5-17) sesquiterpene lactones along with two known diterpenes (18, 19) were isolated from the whole plant of Carpesium faberi. The new structures were elucidated by means of spectroscopic techniques and some chemical transformations to be pseudoguaian-1α(H)-8α,12-olide-4β-O-β-d-glucopyranoside (1), 4β,10α-dihydroxy-5α(H)-1,11(13)-guaidien-8α,12-olide (2), 4β,10β-dihydroxy-5α(H)-1, 11(13)-guaidien-8β,12-olide (3), and (4S)-acetyloxyl-11(13)-carabren-8β,12-olide (4). All isolates were tested against MCF-7 human breast cancer cells using the MTT assay. Among them, the sesquiterpene lactones (except tomentosin 17) possessing an α-methylene-γ-lactone moiety were found to have in vitro antiproliferative activities, with IC50 values of 3.0-38.8 μg/mL. The effects of four selected sesquiterpene lactones (guaianolide 2, carabranolide 4, pseudoguaianolide 9, eudesmanolide 13) on the cell cycle were examined using flow cytometry (FCM).  相似文献   

4.
Four triterpene saponins, 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-[(6-O-acetyl)-β-d-glucopyranosyl-(1 → 3)]-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-[β-d-galactopyranosyl-(1 → 3)]-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, and 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-[α-l-arabinopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, were isolated from the roots of Securidaca longepedunculata, together with three known compounds. Their structures were established mainly by 2D NMR techniques and mass spectrometry.  相似文献   

5.
Thirteen steroidal saponins were isolated from the leaves of Beaucarnea recurvata Lem. Their structures were established using one- and two-dimensional NMR spectroscopy and mass spectrometry. Six of them were identified as: 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25R)-furosta-5,20(22)-diene-23-one-1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 4)-6-O-acetyl-β-d-glucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, and 24-O-β-d-glucopyranosyl (25R)-spirost-5-ene-1β,3β,24-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside. The chemotaxonomic classification of B. recurvata in the family Ruscaceae was discussed.  相似文献   

6.
An ethanol extract of the aerial parts of Delphinium gracile DC. yielded five flavonol glycosides quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-caffeoyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (1), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (2), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(Z-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (3), kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (4) kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (5) in addition to 4-(β-d-glucopyranosyloxy)-6-methyl-2H-pyran-2-one (6) and rutin. Structures were elucidated by spectroscopic methods.  相似文献   

7.
A new cardenolide, 17β-H-periplogenin-3-O-β-d-digitoxoside (1), and a new pregnane glycoside, Δ5-pregnene-3β,16α-diol-d-O-[2,4-O-diacetyl-β-digitalopyranosyl-(1 → 4)-β-d-cymaropyranoside]-16-O-[β-d-glucopyranoside] (2) were isolated from the roots of Streptocaulon tomentosum (Asclepiadaceae) together with a series of known compounds. Their chemotaxonomic significance for the separation of S. tomentosum from Streptocaulon juventas is discussed, suggesting a rather clear distinction of these species.  相似文献   

8.
Five cycloartane-type triterpene glycosides were isolated from the methanol extract of the roots of Astragalus amblolepis Fischer along with one known saponin, 3-O-β-D-xylopyranosyl-16-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane. Structures of the compounds were established as 3-O-β-D-xylopyranosyl-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-[β-D-glucuronopyranosyl-(1 → 2)-β-D-xylopyranosyl]-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-β-D-xylopyranosyl-24,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,24-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane by using 1D and 2D-NMR techniques and mass spectrometry. To the best of our knowledge, the glucuronic acid moiety in cycloartanes is reported for the first time.  相似文献   

9.
The volatile composition of six Hypericum species has been studied. The essential oils were obtained by steam distillation in 500 mL H2O for 2 h in a modified Clevenger apparatus with a water-cooled oil receiver to reduce hydrodistillation over-heating artifacts, and their analyses were performed by GC and GC–MS. Identification of the substances was made by comparison of mass spectra and retention indices with literature records. A total of 100 different compounds were identified. The main constituents of the investigated populations of each taxon have been revealed as follows: Hypericum alpinum: (−)-β-pinene, γ-terpinene, (−)-(E)-caryophyllene; Hypericum barbatum: (−)-α-pinene, (−)-β-pinene, (−)-limonene, (−)-(E)-caryophyllene, (−)-caryophyllene oxide; Hypericum rumeliacum: (−)-α-pinene, (−)-β-pinene, (−)-limonene, Hypericum hirsutum: nonane, undecane, (−)-(E)-caryophyllene, (−)-caryophyllene oxide; Hypericum maculatum: spathulenol, globulol; Hypericum perforatum: (−)-α-pinene, (Z)-β-farnesene, germacrene D; Monoterpene hydrocarbons were shown to be the main group of the taxa belonging to the section Drosocarpium, while the taxa of section Hypericum were more rich in sesquiterpene hydrocarbons.  相似文献   

10.
Methylated anthocyanin glycosides were isolated from red Canna indica flower and identified as malvidin 3-O-(6-O-acetyl-β-d-glucopyranoside)-5-O-β-d-glucopyranoside (1), malvidin 3,5-O-β-d-diglucopyranoside (2), cyanidin-3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside (3), cyanidin-3-O-(6″-O-α-rhamnopyranosyl)-β-galactopyranoside (4), cyanidin-3-O-β-glucopyranoside (5) and cyanidin-O-β-galactopyranoside (6) by HPLC-PDA. Their structures were subsequently determined on the basis of spectroscopic analyses, that is, 1H NMR, 13C NMR, HMQC, HMBC, ESI-MS, and UV-vis. Compounds (1-4) were found to be in major quantity while compounds (5-6) were in minor quantity.  相似文献   

11.
Three oleanane-type saponins, 3-O-β-d-glucopyranosylechinocystic acid 28-O-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-α-l-rhamnopyranosyl ester (1), 3-O-β-d-glucopyranosylechinocystic acid 28-O-α-l-arabinopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-α-l-rhamnopyranosyl ester (2), 3-O-β-d-glucopyranosylcaulophyllogenin 28-O-β-d-apiofuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[β-d-apiofuranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-α-l-rhamnopyranosyl ester (3) were isolated from the whole plant of Arenaria montana. Their unusual structures for the Caryophyllaceae family were established mainly by 2D NMR techniques and mass spectrometry.  相似文献   

12.
Five anthocyanins, cyanidin 3-(2′′-(6′′′-caffeoyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, cyanidin 3-(2′′-(6′′′-E-sinapoyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, cyanidin 3-(2′′-(6′′′-feroyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, pelargonidin 3-(2′′-(6′′′-E-sinapoyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, and pelargonidin 3-(2′′-(6′′′-E-p-coumaroyl-β-glucopyranosyl)-6′′-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside, together with five known anthocyanins have been identified in flowers of Cleome hassleriana Queen line. One monoacylated and four diacylated cyanidin 3-sophoroside-5-glucosides were identified as the main anthocyanins in flowers with mauve colouration, while a homologous glycosidic pattern based on pelargonidin was found in the five main anthocyanins from flowers with pink colouration. The anthocyanins identified in C. hassleriana share the same glycosidic pattern as anthocyanins isolated from the genera Raphanus, Brassica and Iberis in the sister family Brassicaceae.  相似文献   

13.
Eleven oleanane-type saponins (1-11) have been isolated from Microsechium helleri and Sicyos bulbosus roots and were evaluated for their antifeedant, nematicidal and phytotoxic activities. Saponins {3-O-β-d-glucopyranosyl (1 → 3)-β-d-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-xylopyranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranoside} (1), and {3-O-β-d-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-xylopyranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranoside} (2) were also isolated from M. helleri roots together with the two known compounds 3 and 4. Seven known structurally related saponins (5-11) were isolated from S. bulbosus roots. The structures of these compounds were established as bayogenin and polygalacic glycosides using one- and two-dimensional NMR spectroscopy and mass spectrometry. Compounds 7, 10, bayogenin (12) and polygalacic acid (13) showed significant (p < 0.05) postingestive effects on Spodoptera littoralis larvae, compounds 5-11 and 12 showed variable nematicidal effects on Meloydogyne javanica and all tested saponins had variable phytotoxic effects on several plant species (Lycopersicum esculentum, Lolium perenne and Lactuca sativa). These are promising results in the search for natural pesticides from the Cucurbitaceae family.  相似文献   

14.
Four cycloartane glycosides, 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,16β,23α,25-pentahydroxy-20(R),24(S)-epoxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-16-O-hydroxyacetoxy-23-O-acetoxy-3β,6α,25-trihydroxy-20(R),24(S)-epoxycycloartane (2), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-3β,6α,23α,25-tetrahydroxy-20(R),24(R)-16β,24;20,24-diepoxycycloartane (3), 3-O-[α-l-arabinopyranosyl-(1 → 2)-β-d-xylopyranosyl]-25-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), along with three known cycloartane glycosides were isolated from the MeOH extract of the roots of Astragalus campylosema ssp. campylosema. Their structures were established by the extensive use of 1D- and 2D-NMR experiments along with ESIMS and HRMS analysis. The occurrence of the hydroxyl function at position 23 (1-2) and of the ketalic function at C-24 (3) are very unusual findings in the cycloartane class.  相似文献   

15.
The glycosylation of sesamol was investigated using cultured cells of Nicotiana tabacum and Eucalyptus perriniana. The cultured suspension cells of N. tabacum converted sesamol into its β-glucoside (7%) as well as the disaccharide, sesamyl 6-O-(β-D-glucopyranosyl)-β-D-glucopyranoside (β-gentiobioside, 30%). On the other hand, sesamyl 6-O-(α-L-rhamnopyranosyl)-β-D-glucopyranoside (β-rutinoside, 56%), together with the β-glucoside (3%), was produced when sesamol was incubated with suspension cells of E. perriniana.  相似文献   

16.
Four Old World species of Pheidole ants contain different mixtures of farnesene-type hydrocarbons in their poison apparatus, and the mixture is different between the minor and major workers within a species. A bishomofarnesene (C17H28) provides approximately half of the secretion of the Dufour glands of minor workers of Pheidole pallidula. (Z,E)-α-Farnesene constituted 96% of the Dufour secretion of major workers of P. pallidula, but only 20% of that of minors. The Dufour glands of minor workers of Pheidole sinaitica contain a mixture of farnesene homologues with (Z,E)-α-farnesene and the bishomofarnesene also found in P. pallidula predominant. The mixture in major workers was similar but had, in addition, a small amount of (E)-β-farnesene. The Dufour glands of Pheidole teneriffana minors contain chiefly the same bishomofarnesene found in P. pallidula and P. sinaitica while major workers contain (Z,E)-α-farnesene. Pheidole megacephala minor workers contained small amounts of eight farnesenes, while major workers contained essentially no farnesenes. The poison glands of minor workers of P. pallidula contain 3-ethyl-2,5-dimethylpyrazine. No pyrazine compounds were found in the major workers of P. pallidula or the minor workers of P. sinaitica. The poison glands of the major workers of P. sinaitica contained larger amounts of tetra-substituted pyrazines. No pyrazines were found in the poison reservoirs of major or minor workers of P. teneriffana or P. megacephala.  相似文献   

17.
The dried fruits and seeds of Styphnolobium japonicum (L.) Schott (syn. Sophora japonica L.) are used in traditional Chinese medicine and known as Fructus Sophorae or Huai Jiao. The major flavonoids in these fruits and seeds were studied by LC-MS and other spectroscopic techniques to aid the chemical authentication of Fructus Sophorae. Among the flavonoids were two previously unreported kaempferol glycosides: kaempferol 3-O-β-glucopyranosyl(1 → 2)-β-galactopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-xylopyranosyl(1 → 3)-α-rhamnopyranosyl(1 → 6)[β-glucopyranosyl(1 → 2)]-β-glucopyranoside, the structures of which were determined by NMR. Two further tetraglycosides were identified for the first time in S. japonicum as kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-glucopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-galactopyranoside-7-O-α-rhamnopyranoside; the latter was the main flavonoid in mature seeds. The chromatographic profiles of 27 recorded flavonoids were relatively consistent among fruits of similar ages collected from five trees of S. japonicum, and those of maturing unripe and ripe fruits were similar to a market sample of Fructus Sophorae, and thus provide useful markers for authentication of this herbal ingredient. The flower buds (Huai Mi) and flowers (Huai Hua) of S. japonicum (collectively Flos Sophorae) contained rutin as the main flavonoid and lacked the flavone glycosides that were present in flower buds and flowers of Sophora flavescens Ait., reported to be occasional substitutes for Flos Sophorae. The single major flavonoid in fruits of S. flavescens was determined as 3′-hydroxydaidzein.  相似文献   

18.
Six flavonoids including two new flavones, luteolin 7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside), chrysoeriol-7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside) and a mixture of two pairs of diastereoisomeric flavonolignans, (±)-hydnocarpin 7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside)/(±)-hydnocarpin-D 7-O-(4″-O-(E)-coumaroyl)-β-glucopyranoside) with a 2:1 ratio were isolated from the whole plant of Mallotus metcalfianus Croizat, in addition to 10 known compounds. Their structures were evaluated on the basis of different spectroscopic methods, including extensive 1D and 2D NMR spectroscopy. Some extracts have moderate antimicrobial properties and interesting antiradical (DPPH) activity, as well as some compounds isolated from this species. Tannins were also identified in some active extracts.  相似文献   

19.
Four anthocyanins, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside), cyanidin 3-O-(2″-(5?-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) and cyanidin 3-O-(2″-(5?-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) were isolated from leaves of African milk bush, (Synadeniumgrantii Hook, Euphorbiaceae) together with the known cyanidin 3-O-β-xylopyranoside-5-O-β-glucopyranoside and cyanidin 3-O-β-xyloside. The four former pigments are the first reported anthocyanins containing the monosaccharide apiose, and the three 5?-cinnamoyl derivative-2″-(β-apiosyl)-β-xyloside subunits have previously not been reported for any compound.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号