首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chromosome number, C-value and cell volume studies were carried out on three species of the genus Channa , viz., C. punctatus, C. striatus and C. gachua . The chromosome number, karyotypic structure and DNA content per cell along with cell volume are reported and described. A series of chromosomal rearrangements are established in three different karyotypes along with polyploidy. Both pericentric inversion and Robertsonian fusion played a major role in chromosome rearrangements. The nuclear DNA content of these three species is within 19-29% of the present-day placental mammals, and is thus lower than the median amount for fishes in general and teleosts in particular. Their lower DNA content suggests that the three species of the family Channidae are highly specialized, and this is supported by their known morphologic, reproductive, behavioural and ecological characteristics.
The evolutionary significance of these chromosomal rearrangements, their origin and their mode of establishment are discussed. A probable phylogenetic model based on karyotype, C-value and chromosomal rearrangements of the genus is presented.  相似文献   

2.
L G Cook 《Génome》2000,43(2):255-263
Chromosome number reflects strong constraints on karyotype evolution, unescaped by the majority of animal taxa. Although there is commonly chromosomal polymorphism among closely related taxa, very large differences in chromosome number are rare. This study reports one of the most extensive chromosomal ranges yet reported for an animal genus. Apiomorpha Rübsaamen (Hemiptera: Coccoidea: Eriococcidae), an endemic Australian gall-inducing scale insect genus, exhibits an extraordinary 48-fold variation in chromosome number with diploid numbers ranging from 4 to about 192. Diploid complements of all other eriococcids examined to date range only from 6 to 28. Closely related species of Apiomorpha usually have very different karyotypes, to the extent that the variation within some species-groups is as great as that across the entire genus. There is extensive chromosomal variation among populations within 17 of the morphologically defined species of Apiomorpha indicating the existence of cryptic species-complexes. The extent and pattern of karyotypic variation suggests rapid chromosomal evolution via fissions and (or) fusions. It is hypothesized that chromosomal rearrangements in Apiomorpha species may be associated with these insects' tracking the radiation of their speciose host genus, Eucalyptus.  相似文献   

3.
ZOO-FISH (Fluorescent "in vitro" hybridization) was used to establish the chromosomal homology between humans (HSA) and Cebus nigrivitatus (CNI) and Ateles belzebuth hybridus (ABH). These two species belong to different New World monkey families (Cebidae and Atelidae, respectively) which differ greatly in chromosome number and in chromosome morphology. The molecular results were followed by a detailed banding analysis. The ancestral karyotype of Cebus was then determined by a comparison of in situ hybridization results, as well as chromosomal morphology and banding in other Platyrrhini species. The karyotypes of the four species belonging to the genus Cebus differ from each other by three inversions and one fusion as well as in the location and amounts of heterochromatin. Results obtained by ZOO-FISH in ABH are in general agreement with previous gene-mapping and in situ hybridization data in Ateles, which show that spider monkeys have highly derived genomes. The chromosomal rearrangements detected between HSA and ABH on a band-to-band basis were 27 fusions/fissions, 12 centromeric shifts, and six pericentric inversions. The ancestral karyotype of Cebus was then compared with that of Ateles. The rearrangements detected were 20 fusions/fissions, nine centromeric shifts, and five inversions. Atelidae species are linked by a fragmentation of chromosome 4 into three segments forming an association of 4/15, while Ateles species are linked by 13 derived associations. The results also helped clarify the content of the ancestral platyrrhine karyotype and the mode of chromosomal evolution in these primates. In particular, associations 2/16 and 5/7 should be included in the ancestral karyotype of New World monkeys.  相似文献   

4.
The genus Sorex is one of the most successful genera of Eulipotyphla. Species of this genus are characterized by a striking chromosome variability including XY1Y2 sex chromosome systems and exceptional chromosomal polymorphisms within and between populations. To study chromosomal evolution of the genus in detail, we performed cross-species chromosome painting of 7 Sorex species with S. granarius and S. araneus whole-chromosome probes and found that the tundra shrew S. tundrensis has the most rearranged karyotype among these. We reconstructed robust phylogeny of the genus Sorex based on revealed conserved chromosomal segments and syntenic associations. About 16 rearrangements led to formation of 2 major Palearctic groups after their divergence from the common ancestor: the S. araneus group (10 fusions and 1 fission) and the S. minutus group (5 fusions). Further chromosomal evolution of the 12 species inside the groups, including 5 previously investigated species, was accompanied by multiple reshuffling events: 39 fusions, 20 centromere shifts and 10 fissions. The rate of chromosomal exchanges upon formation of the genus was close to the average rate for eutherians, but increased during recent (about 6-3 million years ago) speciation within Sorex. We propose that a plausible ancestral Sorex karyotype consists of 56 elements. It underwent 20 chromosome rearrangements from the boreoeutherian ancestor, with 14 chromosomes retaining the conserved state. The set of genus-specific chromosome signatures was drawn from the human (HSA)-shrew comparative map (HSA3/12/22, 8/19/3/21, 2/13, 3/18, 11/17, 12/15 and 1/12/22). The syntenic association HSA4/20, that was previously proposed as a common trait of all Eulipotyphla species, is shown here to be an apomorphic trait of S. araneus.  相似文献   

5.
M. King 《Genetica》1984,64(2):101-114
Karyotypic data are presented for six additional species from the genus Gehyra collected in Australia, New Guinea and Fiji. C and G-banding of three of the very diverse species which all share the ancestral 2n=44 karyotype, further strengthens the phylogenetic model for the evolution of this complex. With 19 Australian species and chromosome races of Gehyra now karyotyped, it has been possible to evaluate the mode of chromosomal evolution and the role that chromosome change has played in speciation in this genus. It is clear that speciation in certain karyomorph groups has occurred allopatrically, without any gross chromosomal changes. However, in the numerous chromosome races and species which have been involved in colonizing radiations, chromosomal rearrangements have been intricately associated with the speciation process.  相似文献   

6.
A comparative cytogenetic map was built for Lotusuliginosus (2n = 12), expanding previous analyses that revealed intra- and interspecific chromosomal rearrangements in the model legume L. japonicus, L. filicaulis, and L. burttii. This species is positioned in a sister clade of the previously-mapped species and is proposed as one of the progenitors of L. corniculatus, the main forage crop of the genus. The cytogenetic map allowed the location of 12 genomic regions to be compared between these species. A high macrosynteny was revealed, but it was interrupted by a translocation involving chromosomes 3 and 5, a new rearrangement for the genus. Also, a transposition on chromosome 2 was found in L. japonicus 'Miyakojima'. Furthermore, changes in the number, size, and position of rDNA sites were observed, as well as an intraspecific size heteromorphism of the 5S rDNA site on L. uliginosus chromosome 6. The karyotype differences observed are proportional to the phylogenetic distance among these species.  相似文献   

7.
Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.  相似文献   

8.
Harttia is a genus of the subfamily Loricariinae that posses a broad chromosomal variation. In addition to interspecific karyotype diversity within this group, a multiple sex chromosome system, XX/XY1Y2, has been described for Harttia carvalhoi. Thus, this study aimed to determine the role of chromosomal rearrangements in karyotype differentiation in Harttia by classical and molecular cytogenetic procedures. The results show that Robertsonian rearrangements have a prominent role in the chromosomal diversification of the species analysed, which initially leads to hypothesize a diploid number reduction in Harttia torrenticola and H. carvalhoi. The metacentric chromosome 1, shared between H. torrenticola and H. carvalhoi, could have originated from centric fusions from the ancestral karyotype. A centric fission event associated with the first metacentric pair allowed for the origination of a multiple sex chromosome system XX/XY1Y2, specific to H. carvalhoi. This study highlights the relevance of Robertsonian rearrangements in karyotypic differentiation of the species studied and demonstrates that the occurrence of a centric fission, as opposed to a previously hypothesised chromosome fusion, is directly implicated in the origin of the sex chromosome system of H. carvalhoi.  相似文献   

9.
The subfamily Phyllostominae comprises taxa with a variety of feeding strategies. From the cytogenetic point of view, Phyllostominae shows different rates of chromosomal evolution between genera, with Phyllostomus hastatus probably retaining the ancestral karyotype for the subfamily. Since chromosomal rearrangements occur rarely in the genome and have great value as phylogenetic markers and in taxonomic characterization, we analyzed three species: Lophostoma silvicola (LSI), Phyllostomus discolor (PDI) and Tonatia saurophila (TSA), representing the tribe Phyllostomini, collected in the Amazon region, by classic and molecular cytogenetic techniques in order to reconstruct the phylogenetic relationships within this tribe. LSA has a karyotype of 2n=34 and FN=60, PDI has 2n=32 and FN=60 and TSA has 2n=16 and FN=20. Comparative analysis using G-banding and chromosome painting show that the karyotypic complement of TSA is highly rearranged relative to LSI and PHA, while LSI, PHA and PDI have similar karyotypes, differing by only three chromosome pairs. Nearly all chromosomes of PDI and PHA were conserved in toto, except for chromosome 15 that was changed by a pericentric inversion. A strongly supported phylogeny (bootstrap=100 and Bremer=10 steps), confirms the monophyly of Phyllostomini. In agreement with molecular topologies, TSA was in the basal position, while PHA and LSI formed sister taxa. A few ancestral syntenies are conserved without rearrangements and most associations are autapomorphic traits for Tonatia or plesiomorphic for the three genera analyzed here. The karyotype of TSA is highly derived in relation to that of other phyllostomid bats, differing from the supposed ancestral karyotype of Phyllostomidae by multiple rearrangements. Phylogenies based on chromosomal data are independent evidence for the monophyly of tribe Phyllostomini as determined by molecular topologies and provide additional support for the paraphyly of the genus Tonatia by the exclusion of the genus Lophostoma.  相似文献   

10.
The karotypes of five species of Malagasy lemurs are described and compared with those of 12 previously studied species or subspecies. Based on these studies, phylogenetic relationships among nearly all the species of Cheirogaleidae and Lemuridae are proposed. The karyotype of the common ancestor is identical or very similar to that of Microcebus. Nearly 60 chromosomal changes, including five intrachromosomal rearrangements of the X chromosome, have been detected during the evolution of these two families. The possible evolutionary role of the different chromosomal rearrangements is discussed.  相似文献   

11.
African killifishes of the genus Chromaphyosemion show a high degree of phenotypic and karyotypic diversity. The latter is especially pronounced in C. riggenbachi, a morphologically defined species restricted to a small distribution area in Cameroon. This study presents a detailed reconstruction of karyotype differentiation within C. riggenbachi using conventional Giemsa staining and sequential chromosome banding as well as a phylogenetic analysis based on part of the mitochondrial (mt) cytochrome b gene from eleven populations. The cytogenetic analysis revealed differences in chromosome morphology, banding patterns and/or diploid chromosome number (2n) among all populations examined. Diploid number ranged from 2n = 20 to 2n = 36 and varied mainly among populations, while C-banding patterns and NOR phenotypes showed fixed differences among populations as well as some variability within populations. The mtDNA analysis disclosed five clearly differentiated haplotype groups. Mapping the karyotype data onto the mtDNA dendrogram revealed a decrease in 2n from the most basal to the most derived groups, thus demonstrating a reduction of 2n during their evolutionary history. Our results indicate that karyotype differentiation involved Robertsonian fusions as well as non-Robertsonian processes. Causes of the high karyotypic variability may include an elevated chromosomal mutation rate as well as certain features of the ecology and mating system that could facilitate the fixation of chromosomal rearrangements. The pattern of karyotype and haplotype differentiation and the results of previous crossing experiments suggest incipient speciation in C. riggenbachi.  相似文献   

12.
L. Christidis 《Genetica》1986,71(2):99-113
Thirteen species of estrildid finches belonging to the Lonchurae were examined cytogenetically by G- and C-banding. The major forms of karyotypic change, both within and between species, were pericentric inversions and changes in the amount of heterochromatin. It appears that the direction of chromosome change in this lineage is towards an entirely telocentric karyotype because inversions converting a biarmed chromosome into a telocentric one only occur when all the macrochromosomes of smaller size are also telocentric. A comparison of hybrid fertility data and karyotypic differences indicates that genic factors affecting gonadal development, and not chromosomal rearrangements, are the primary influence in determining hybrid fertility. The chromosomal data was also used to clarify systematic relationships within the Lonchurae and demonstrate that the genus Lonchura as presently construed is polyphyletic.  相似文献   

13.
The Ursidae family includes eight species, the karyotype of which diverges somewhat, in both chromosome number and morphology, from that of other families in the order Carnivora. The combination of consensus molecular phylogeny and high-resolution trypsin G-banded karyotype analysis has suggested that ancestral chromosomal fissions and at least two fusion events are associated with the development of the different ursid species. Here, we revisit this hypothesis by hybridizing reciprocal chromosome painting probes derived from the giant panda (Ailuropoda melanoleuca), domestic cat (Felis catus), and man (Homo sapiens) to representative bear species karyotypes. Comparative analysis of the different chromosome segment homologies allowed reconstruction of the genomic composition of a putative ancestral bear karyotype based upon the recognition of 39 chromosome segments defined by painting as the smallest conserved evolutionary unit segments (pSCEUS) among these species. The different pSCEUS combinations occurring among modern bear species support and extend the postulated sequence of chromosomal rearrangements and provide a framework to propose patterns of genome reorganization among carnivores and other mammal radiations.  相似文献   

14.
Making pairwise comparisons of karyotypes of species belonging to a genus, we have calculated the probabilities that two randomly chosen species from a genus have the same karyotype. This probability decreases exponentially with time. Thus if we know the divergence time of species from a common ancestor, we can know the rate at which a karyotype changes in unit time. According to our result, mammalian karyotypes appear to be evolving at a rate of one change of either chromosomal number or arm number in every two and half million years. Data indicate that the rate of evolution in chromosome number and arm number are fairly similar in most of mammalian genera. The genus Peromyscus is, however, an exception and exhibits a rather rapid change in the arm number due to heterochromatin changes, but a very slow evolution in the chromosome number.  相似文献   

15.
The present study provides a comprehensive review of cytogenetic data on Meliponini and their chromosomal evolution. The compiled data show that only 104 species of stingless bees, representing 32 of the 54 living genera have been studied cytogenetically and that among these species, it is possible to recognize three main groups with n?=?9, 15 and 17, respectively. The first group comprises the species of the genus Melipona, whereas karyotypes with n?=?15 and n?=?17 have been detected in species from different genera. Karyotypes with n?=?17 are the most common among the Meliponini studied to date. Cytogenetic information on Meliponini also shows that although chromosome number, in general, is conserved among species of a certain genus, other aspects, such as chromosome morphology, quantity, distribution and composition of heterochromatin, may vary between them. This reinforces the fact that the variations observed in the karyotypes of different Meliponini groups cannot be explained by a single theory or a single type of structural change. In addition, we present a discussion about how these karyotype variations are related to the phylogenetic relationships among the different genera of this tribe.  相似文献   

16.
Using differential G-staining of chromosomes, the karyotype of the endothelial cell line ECV304 obtained from endotheliocytes of the human umbilical vein was studied. The cells have been shown to have a polyploid karyotype with a number of chromosomes ranging from 96 to 112, as well as multiple numerical and structural clonal chromosome abnormalities. The structural rearrangements involve almost all chromosomes of the karyotype. Several paired chromosomal rearrangements have been revealed and include del(9)(p21), as well as two derivates of chromosome 3 with a breakpoint at the p25 locus, i.e., der(3)t(3;12)(3p25;12q11~12;12q21~24.?1) and der(3)t(3;?)(3p25). The role of these rearrangements in the immortalization of endotheliocytes and in angiogenesis is discussed. A comparison of the karyotypes of the cell line ECV304 and of the bladder carcinoma T24 cell line has shown that these karyotypes differ in all of the main cytogenetic characteristics. No identical structural chromosomal rearrangements, nor rearrangements characteristic of bladder carcinoma cells have been revealed. The studied endothelial cell line ECV304 is not identical to the T24 cell line.  相似文献   

17.
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo‐Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species‐specific C‐banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine‐cytosine‐rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.  相似文献   

18.
New chromosome counts are reported for Boronia clavata 2 n  = 14, B. heterophylla 'Near White' 2 n  = 15, B.  'Carousel' 2 n  = 16, B. deanei 2 n  = 22, B. chartacea 2 n  = 32, B. keysii 2 n  = 32, B. pilosa 2 n  = 44, B. anethifolia 2 n  = 36 and B. citriodora 2 n  = 108. Studies in 20 genotypes of 18 species and one interspecific hybrid revealed that they are highly complex in terms of chromosome number, ploidy level, chromosomal length, karyotype constitution and asymmetry. Karyotype analysis indicated that Boronia taxa with high chromosome numbers are primitive and those with lower numbers are derived. The basic chromosome number for this genus is suggested to be x = 18. Analysis of chromosome number, variations of total chromosome length (TCL) and average chromosome length (ACL), Nombre Fondamental (NF) and karyotype asymmetry suggest that dysploid reduction is the major mechanism in Boronia karyotype evolution. Chromosomal rearrangements might also have been involved. Origin, chromosome number changes and spread of Boronia are discussed in relation to the species divergence and the geological and climatic changes of the Australian continent.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 309–320.  相似文献   

19.
In an attempt to discover which primate species have the karyotypes most similar to that of man, the chromosome numbers, the Nombre Fondamental and the numbers of chromosomal rearrangements separating the karyotypes of many species were considered. In addition to man, 6 species were selected for their karyotypic similarities and 1 for its dissimilarity. A model representing the karyotypes, by 2 diagrams, is proposed for these 8 species. These diagrams characterize each karyotype, as well as the theoretical random distribution of break-points, after the effect of a clastogenic agent. This allows one to make quantitative analyses of any type of chromosomal rearrangement, with objective criteria, and should improve the study of chromosomal mutagenesis, and particularly interspecies comparisons.  相似文献   

20.
中国西南地区鹿药属4种15居群核型研究   总被引:1,自引:0,他引:1  
对产于中国西南部的鹿药属(Maianthemum)4种植物进行了细胞学研究,包括染色体数目,多倍化,非整倍性和随体染色体,以及核型不对称性和核型进化。结果表明:1)除了在云南丽江采集的Maianthemum tatsienensis染色体数目为2n=72之外,其余的居群全为2n=36;2)核型在居群间存在变异,特别是在具中部染色体和近中部染色体的数目以及随体染色体的数目和位置上。此外,M.nanchuanense和M.szechuanicum的核型是首次报道,B染色体也是首次在该属中发现。我们推测鹿药属的进化方式包括频繁的染色体畸变以及不同水平上的多倍化,而中国西南部是该属的分化中心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号