首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Phosphatidylinositol 3-kinase (PI 3-kinase) has a regulatory 85 kDa adaptor subunit whose SH2 domains bind phosphotyrosine in specific recognition motifs, and a catalytic 110 kDa subunit. Mutagenesis of the p110 subunit, within a sequence motif common to both protein and lipid kinases, demonstrates a novel intrinsic protein kinase activity which phosphorylates the p85 subunit on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This protein-serine kinase activity is detectable only upon high affinity binding of the p110 subunit with its unique substrate, the p85 subunit. Tryptic phosphopeptide mapping revealed that the same major peptide was phosphorylated in p85 alpha both in vivo in cultured cells and in the purified recombinant enzyme. N-terminal sequence and mass analyses were used to identify Ser608 as the major phosphorylation site on p85 alpha. Phosphorylation of the p85 subunit at this serine causes an 80% decrease in PI 3-kinase activity, which can subsequently be reversed upon treatment with protein phosphatase 2A. These results have implications for the role of inter-subunit serine phosphorylation in the regulation of the PI 3-kinase in vivo.  相似文献   

2.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

3.
Phosphatidylinositol (PI) 3-kinase is a heterodimer consisting of an 85-kDa subunit (p85) and 110-kDa subunit (p110). The 85-kDa noncatalytic subunit, which contains two Src homology 2 (SH2) domains, one SH3 domain, and a domain homologous to the carboxy terminus of the breakpoint cluster region gene product, is known to mediate the association of the PI 3-kinase complex with activated growth factor receptors. We previously demonstrated that the C-terminal SH2 domain of p85 is responsible for the interaction of PI 3-kinase with phosphorylated platelet-derived growth factor receptor. To define the region in p85 that directs the complex formation with the PI 3-kinase catalytic subunit, a series of truncated p85 mutants was analyzed for association with p110 in vivo. We found that a fragment of p85 containing the region between the two SH2 domains was sufficient to promote the interaction with p110 in vivo. The complex between the fragment of p85 and p110 had PI 3-kinase activity that was comparable in magnitude to the activity of p110 associated with full-length p85. The binding with p110 was abolished when this domain in p85 was disrupted. These results identify a novel structural and functional element that is responsible for localizing the catalytic subunit of PI 3-kinase.  相似文献   

4.
5.
One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.  相似文献   

6.
Using immobilized PDGF receptor as an affinity reagent, we purified an 85 kd protein (p85) from cell lysates and we cloned its cDNA. The protein contains an SH3 domain and two SH2 domains that are homologous to domains found in several receptor-associated enzymes. Recombinant p85 overexpressed in mammalian cells inhibited the binding of endogenous p85 and a 110 kd protein to the receptor and also blocked the association of PI3-kinase activity with the receptor. Experiments with receptor mutants and with short peptides derived from the kinase insert region of the PDGF receptor showed that the recombinant p85 binds to a well-defined phosphotyrosine-containing sequence of the receptor. p85 appears to be the subunit of PI3-kinase that links the enzyme to the ligand-activated receptor.  相似文献   

7.
Insulin drives the formation of a complex between tyrosine-phosphorylated IRS-1 and SH2-containing proteins. The SH2-containing protein Grb2 also possesses adjacent SH3 domains, which bind the Ras guanine nucleotide exchange factor Sos. In this report, we examined the involvement of another SH3 binding protein, dynamin, in insulin signal transduction. SH3 domains of Grb2 as GST fusion proteins bound dynamin from lysates of CHO cells expressing wild-type insulin receptor (IR) (CHO-IR cells) in a cell-free system (in vitro). Immunoprecipitation studies using specific antibodies against Grb2 revealed that Grb2 was co-immunoprecipitated with dynamin from unstimulated CHO-IR cells. After insulin treatment of CHO-IR cells, anti-dynamin antibodies co-immunoprecipitated the IR beta-subunit and IRS-1, as tyrosine-phosphorylated proteins and PI 3-kinase activity. However, purified rat brain dynamin did not bind directly to either the IR, IRS-1 or the p85 subunit of PI 3-kinase in vitro. Together, these results suggest that in CHO-IR cells, insulin stimulates the binding of dynamin to tyrosine-phosphorylated IRS-1 via Grb2 and that IRS-1 also associates with PI 3-kinase in response to insulin. This complex formation was reconstituted in vitro using recombinant baculovirus-expressed IRS-1, GST-Grb2 fusion proteins and dynamin peptides containing proline-rich sequences. Furthermore, dynamin GTPase activity was found to be stimulated when an IRS-1-derived phosphopeptide, containing the Grb2 binding site, was added to the dynamin-Grb2 complex in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors.  相似文献   

9.
Growth factors stimulate the enzyme phosphatidylinositol (PI) 3-kinase in cells in culture. Insulin rapidly stimulates tyrosine phosphorylation of its endogenous substrate, insulin receptor substrate 1 (IRS-1), and in vitro IRS-1 associates with PI 3-kinase, thus activating the enzyme. We have examined whether insulin is capable of stimulating the PI 3-kinase pathway in two physiological target tissues for the actions of insulin in vivo, liver and skeletal muscle. After intraportal injection of insulin into anesthetized rats, there was a 2-fold stimulation of total hepatic PI 3-kinase activity in liver and muscle extracts and a 10- to 20-fold increase in PI 3-kinase activity immunoprecipitated with anti-IRS-1 antibodies. Stimulation of PI 3-kinase was accompanied by an association between this enzyme and IRS-1 as detected by immunoprecipitation of liver and muscle extracts with anti-IRS-1 antibodies and Western blotting with antibodies to the 85-kDa subunit of PI 3-kinase. Immunoprecipitation with anti-p85 antibodies and phosphotyrosine immunoblotting revealed no tyrosine phosphorylation of PI 3-kinase, but demonstrated co-precipitation of tyrosine-phosphorylated IRS-1, as well as another phosphotyrosine protein of approximately 135-140 kDa. Thus, IRS-1 phosphorylation plays a significant role in the activation of PI 3-kinase in vivo by insulin.  相似文献   

10.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

11.
Affinity-purified bovine brain phosphatidylinositol 3-kinase (PI3-kinase) contains two major proteins of 85 and 110 kd. Amino acid sequence analysis and cDNA cloning reveals two related 85 kd proteins (p85 alpha and p85 beta), which both contain one SH3 and two SH2 regions (src homology regions). When expressed, these 85 kd proteins bind to and are substrates for tyrosine-phosphorylated receptor kinases and the polyoma virus middle-T antigen/pp60c-src complex, but lack PI3-kinase activity. However, an antiserum raised against p85 beta immunoprecipitates PI3-kinase activity. The active PI3-kinase complex containing p85 alpha or p85 beta and the 110 kd protein binds to PDGF but not EGF receptors. p85 alpha and p85 beta may mediate specific PI3-kinase interactions with a subset of tyrosine kinases.  相似文献   

12.
The insulin and insulin-like growth factor-I (IGF-I) receptors are tyrosine kinases. Consequently, an approach to investigating signaling pathways from these receptors is to characterize proteins rapidly phosphorylated on tyrosine in response to insulin and IGF-I. In many cell types the most prominent phosphotyrosine (Ptyr) protein, in addition to the receptors themselves, is a protein of ?160 kD, now known as the insulin receptor substrate 1 (IRS-1). We have purified IRS-1 from mouse 3T3-L1 adipocytes, obtained the sequences of tryptic peptides, and cloned its cDNA based on this information. Mouse IRS-1 is a protein of 1,231 amino acids. It contains 12 tyrosine residues in sequence contexts typical for tyrosine phosphorylation sites. Six of these begin the sequence motif YMXM and two begin the motif YXXM. Recent studies have shown that the enzyme phosphatidylinositol 3-kinase (PI 3-kinase) binds tightly to the activated platelet-derived growth factor (PDGF) and colony-stimulating factor-1 (CSF-1) receptors, through interaction of the src homology 2 (SH2) domains on the 85 kD subunit of PI 3-kinase with Ptyr in one of these motifs on the receptors. We have found that, upon insulin treatment of 3T3-L1 adipocytes, a portion of the Ptyr form of IRS-1 becomes tightly complexed with PI 3-kinase. Since IRS-1 binds to fusion proteins containing the SH2 domains of PI 3-kinase, association most likely occurs through this domain. The association of IRS-1 with PI 3-kinase activates the enzyme about fivefold. Thus, one signaling pathway from the insulin and IGF-I receptors probably proceeds as follows: tyrosine phosphorylation of IRS-1, tight association of IRS-1 with PI 3-kinase with accompanying activation of the kinase, elevation of the PI 3-phosphates. © 1993 Wiley-Liss, Inc.  相似文献   

13.
We have investigated the role of the SH3 and BH domains in the function of the p85α adapter/regulatory subunit of PI 3-kinase. In these studies epitope-tagged adapter subunit constructs containing wild-type p85α, p85α lacking the SH3 domain (ΔSH3-p85α), or p85α lacking the Rac-GAP/BCR homology (BH) domain (ΔBH-p85α) were coexpressed with either the p110α or p110β PI 3-kinase catalytic subunit in HEK293 cells. The deletion of either BH or SH3 domains had no effect on the intrinsic activity of the PI 3-kinase heterodimers. However, the ability of activated Rac to stimulate PI 3-kinase activity was only observed in heterodimers containing the p85α and ΔSH3-p85α, indicating that rac binding to the BH domain is responsible for rac-induced stimulation of class Ia PI 3-kinase. We also investigated the effect of SH3 and BH domain deletion on the ability of insulin to induce recruitment of these constructs into phosphotyrosine-containing signaling complexes. We find that p85α expressed alone is poorly recruited into such signaling complexes. However, when coexpressed with catalytic subunit, the p85α adapter subunit is recruited to an extent similar to that of endogenous p85α. Maximal insulin stimulation caused a similar level of recruitment of p85α, ΔSH3-p85α, and ΔBH-p85α to signaling complexes when these adapter subunits were coexpressed with catalytic subunit. However, there was a higher level of basal association of the ΔSH3-p85α and ΔBH-p85α with tyrosine-phosphorylated proteins, meaning that the insulin-induced fold increase in recruitment was lower for these forms of the adapter. These results indicate that the N-terminal domains of p85α play a critical role in the way the adapter subunit responds to growth factor stimulation.  相似文献   

14.
Src homology 2 (SH2) domains exist in many intracellular proteins and have well characterized roles in signal transduction. SH2 domains bind to phosphotyrosine (Tyr(P))-containing proteins. Although tyrosine phosphorylation is essential for protein-SH2 domain interactions, the binding specificity also derives from sequences C-terminal to the Tyr(P) residue. The high affinity and specificity of this interaction is critical for precluding aberrant cross-talk between signaling pathways. The p85alpha subunit of phosphoinositide 3-kinase (PI 3-kinase) contains two SH2 domains, and it has been proposed that in competition with Tyr(P) binding they may also mediate membrane attachment via interactions with phosphoinositide products of PI 3-kinase. We used nuclear magnetic resonance spectroscopy and biosensor experiments to investigate interactions between the p85alpha SH2 domains and phosphoinositides or inositol polyphosphates. We reported previously a similar approach when demonstrating that some pleckstrin homology domains show binding specificity for distinct phosphoinositides (Salim, K., Bottomley, M. J., Querfurth, E., Zvelebil, M. J., Gout, I., Scaife, R., Margolis, R. L., Gigg, R., Smith, C. I., Driscoll, P. C., Waterfield, M. D., and Panayotou, G. (1996) EMBO J. 15, 6241-6250). However, neither SH2 domain exhibited binding specificity for phosphoinositides in phospholipid bilayers. We show that the p85alpha SH2 domain Tyr(P) binding pockets indiscriminately accommodate phosphoinositides and inositol polyphosphates. Binding of the SH2 domains to Tyr(P) peptides was only poorly competed for by phosphoinositides or inositol polyphosphates. We conclude that these ligands do not bind p85alpha SH2 domains with high affinity or specificity. Moreover, we observed that although wortmannin blocks PI 3-kinase activity in vivo, it does not affect the ability of tyrosine-phosphorylated proteins to bind to p85alpha. Consequently phosphoinositide products of PI 3-kinase are unlikely to regulate signaling through p85alpha SH2 domains.  相似文献   

15.
Under resting conditions, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) serves to both stabilize and inactivate the p110 catalytic subunit. The inhibitory activity of p85 is relieved by occupancy of the NH(2)-terminal SH2 domain of p85 by phosphorylated tyrosine. Src family kinases phosphorylate tyrosine 688 in p85, a process that we have shown to be reversed by the activity of the p85-associated SH2 domain-containing phosphatase SHP1. We demonstrate that phosphorylation of the downstream PI3K target Akt is increased in cells lacking SHP1, implicating phosphorylation of p85 in the regulation of PI3K activity. Furthermore, the in vitro specific activity of PI3K associated with tyrosine- phosphorylated p85 is higher than that associated with nonphosphorylated p85. Expression of wild-type p85 inhibits PI3K enzyme activity as indicated by PI3K- dependent Akt phosphorylation. The inhibitory activity of p85 is accentuated by mutation of tyrosine 688 to alanine and reversed by mutation of tyrosine 688 to aspartic acid, changes that block and mimic tyrosine phosphorylation, respectively Strikingly, mutation of tyrosine 688 to aspartic acid completely reverses the inhibitory activity of p85 on cell viability and activation of the downstream targets Akt and NFkappaB, indicative of the physiological relevance of p85 phosphorylation. Tyrosine phosphorylation of Tyr(688) or mutation of tyrosine 688 to aspartic acid is sufficient to allow binding to the NH(2)-terminal SH2 domain of p85. Thus an intramolecular interaction between phosphorylated Tyr(688) and the NH(2)-terminal SH2 domain of p85 can relieve the inhibitory activity of p85 on p110. Taken together, the data indicate that phosphorylation of Tyr(688) in p85 leads to a novel mechanism of PI3K regulation.  相似文献   

16.
Phosphatidylinositol (PI) 3-kinase has an 85 kDa subunit (p85 alpha) which mediates its association with activated protein tyrosine kinase receptors through SH2 domains, and an 110 kDa subunit (p110) which has intrinsic catalytic activity. Here p85 alpha and a related protein p85 beta are shown to form stable complexes with recombinant p110 in vivo and in vitro. Using a panel of glutathione S-transferase (GST) fusion proteins of the inter-SH2 region of p85, 104 amino acids were found to bind directly the p110 protein, while deletion mutants within this region further defined the binding site to a sequence of 35 amino acids. Transient expression of the mutant p85 alpha protein in mouse L cells showed it was unable to bind PI 3-kinase activity in vivo. Mapping of the complementary site of interaction on the p110 protein defined 88 amino acids in the N-terminal region of p110 which mediate the binding of this subunit to either the p85 alpha or the p85 beta proteins. The inter-SH2 region of p85 is predicted to be an independently folded module of a coiled-coil of two long anti-parallel alpha-helices. The predicted structure of p85 suggests a basis for the intersubunit interaction and the relevance of this interaction with respect to the regulation of the PI 3-kinase complex is discussed.  相似文献   

17.
Class IA phosphatidylinositol 3-kinase (PI 3-kinase), which is composed of a 110 kDa catalytic subunit and a regulatory subunit, plays a key role in most insulin dependent cellular responses. To date, five mammalian regulatory subunit isoforms have been identified, including two 85 kDa proteins (p85α and p85β), two 55 kDa proteins (p55γ and p55α), and one 50 kDa protein (p50α). In the present study, we overexpressed these recombinant proteins, tagged with green fluorescent proteins (GFP), in CHO-IR cells and investigated intracellular localizations in both the presence and the absence of insulin stimulation. Interestingly, in response to insulin, only p85α and p85β redistributed to isolated foci in the cells, while both were present throughout the cytoplasm in quiescent cells. In contrast, p55s accumulated in the perinuclear region irrespective of insulin stimulation, while p50α behaved similarly to control GFP. Immunofluorescent antibodies against endogenous IRS-1 revealed IRS-1 to be co-localized in the p85 foci in response to insulin. As both insulin receptors and p110α catalytic subunits were absent from these foci on immunofluorescence study, only p85 and IRS-1 were suggested to form a sequestration complex in response to insulin. To determine the domain responsible for IRS-1 complex formation, we prepared and overexpressed the SH3 domain deletion mutant of p85α in CHO-IR cells. This mutant failed to form foci, suggesting the SH3 domain of regulatory subunits to be responsible for formation of the p85-IRS-1 sequestration complex. In conclusion, our study revealed the SH3 domain of PI 3-kinase to play a critical role in intracellular localizations, including formation of foci with IRS-1 in response to insulin.  相似文献   

18.
Previous studies have suggested that the two subunits of phosphatidylinositol (PI) 3-kinase, p85 and p110, function as localizing and catalytic subunits, respectively. Using recombinant p85 and p110 molecules, we have reconstituted the specific interaction between the two subunits of mouse PI 3-kinase in cells and in vitro. We have previously shown that the region between the two Src homology 2 (SH2) domains of p85 is able to form a functional complex with the 110-kDa subunit in vivo. In this report, we identify the corresponding domain in p110 which directs the binding to p85. We demonstrate that the interactive domains in p85 and p110 are less than 103 and 124 amino acids, respectively, in size. We also show that the association of p85 and p110 mediated by these domains is critical for PI 3-kinase activity. Surprisingly, a complex between a 102-amino-acid segment of p85 and the full-length p110 molecule is catalytically active, whereas p110 alone has no activity. In addition to the catalytic domain in the carboxy-terminal region, 123 amino acids at the amino terminus of p110 were required for catalytic activity and were sufficient for the interaction with p85. These results indicate that the 85-kDa subunit, previously thought to have only a linking role in localizing the p110 catalytic subunit, is an important component of the catalytic complex.  相似文献   

19.
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Monoclonal antibodies raised against the 85-kDa subunit (p85) of bovine phosphatidylinositol (PI) 3-kinase were found to recognize uncomplexed p85 or p85 in the active PI 3-kinase. Immunoprecipitation studies of Chinese hamster ovary cells, which overexpress the human insulin receptor when treated with insulin, showed increased amounts of p85 and PI 3-kinase activity immunoprecipitable with monoclonal anti-p85 antibody and no increase in the tyrosine phosphorylation of p85. Insulin also induced an association of p85 with the tyrosine-phosphorylated insulin receptor substrate 1 (IRS-1) and other phosphorylated proteins ranging in size from 100 to 170 kDa but not with the activated insulin receptor. In vitro reconstitution studies were used to show p85 in the active PI 3-kinase associated with the tyrosine-phosphorylated IRS-1 but not with the activated insulin receptor. Competition studies using synthetic phosphopeptides corresponding to potential tyrosine phosphorylation sites of IRS-1 revealed that phosphopeptides containing YMXM motifs inhibited this association with different potencies, whereas nonphosphorylated analogues and a phosphopeptide containing the EYYE motif had no effect. Src homology region 2 domains of p85 expressed as glutathione S-transferase fusion proteins also bound to tyrosine-phosphorylated IRS-1. These results suggest that insulin causes the association of PI 3-kinase with IRS-1 via phosphorylated YMXM motifs of IRS-1 and Src homology region 2 domains of p85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号