首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate dehydrogenase (GDH) was purified to homogeneity from the liver of euthermic (37 degrees C body temperature) and hibernating (torpid, 5 degrees C body temperature) Richardson's ground squirrels (Spermophilus richardsonii). SDS-PAGE yielded a subunit molecular weight of 59.5+/-2 kDa for both enzymes, but reverse phase and size exclusion HPLC showed native molecular weights of 335+/-5 kDa for euthermic and 320+/-5 kDa for hibernator GDH. Euthermic and hibernator GDH differed substantially in apparent Km values for glutamate, NH4+, and alpha-ketoglutarate, as well as in Ka and IC50 values for nucleotide and ion activators and inhibitors. Kinetic properties of each enzyme were differentially affected by assay temperature (37 versus 5 degrees C). For example, the Km for alpha-ketoglutarate of euthermic GDH was higher at 5 degrees C (3.66+/-0.34 mM) than at 37 degrees C (0.10+/-0.01 mM), whereas hibernator GDH had a higher affinity for alpha-ketoglutarate at 5 degrees C (Km was 0.98+/-0.08 mM at 37 degrees C and 0.43+/-0.02 mM at 5 degrees C). Temperature effects on Ka ADP values of the enzymes followed a similar pattern; GTP inhibition was strongest with the euthermic enzyme at 37 degrees C and weakest with hibernator GDH at 5 degrees C. Entry into hibernation leads to stable changes in the properties of ground squirrel liver GDH that allow the enzyme to function optimally at the prevailing body temperature.  相似文献   

2.
Three isozymes of glutamate dehydrogenase (GDH) of Chlamydomonas reinhardtii, induced under different trophic and stress conditions, have been purified about 800-1000-fold to electrophoretic homogeneity. They are hexamers of Mr 266,000-269,000 as deduced from gel filtration and sedimentation coefficient data. GDH1 consisted of six identical subunits of 44 kDa each, whereas both GDH2 and GDH3 consisted of six similar-sized monomers (4 of 44 kDa and 2 of 46 kDa). Optimum pH for the three activities with each pyridine nucleotide was identical (8.5 with NADH; 7.7 with NADPH; and 9.0 with NAD+). The isozymes exhibited similar high optimum temperature values (60-62 degrees C) and isoelectric points (7.9-8.1). Activity was enhanced in vitro by Ca2+ ions and strongly inhibited by pyridoxal 5'-phosphate, KCN, o-phenanthroline and EDTA, and to a lesser extent by pHMB and methylacetimidate. In the aminating reaction the three isozymes were inhibited in a concentration-dependent process by both NADH and NADPH, with apparent Km values for NH4+ ranging from 13-53 mM; 0.36-1.85 mM for 2-oxoglutarate and 0.07-0.78 mM for NADH and NADPH. In the deaminating reaction apparent Km values ranged from 0.64-3.52 mM for L-glutamate and 0.20-0.32 for NAD+. In addition, the three isozymes exhibited a non-hyperbolic kinetics for NAD+ with negative cooperativity (n = 0.8).  相似文献   

3.
Yang X  Ma K 《Journal of bacteriology》2007,189(8):3312-3317
An NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima was purified. The enzyme was very active in catalyzing the reduction of oxygen to hydrogen peroxide with an optimal pH value of 7 at 80 degrees C. The V(max) was 230 +/- 14 mumol/min/mg (k(cat)/K(m) = 548,000 min(-1) mM(-1)), and the K(m) values for NADH and oxygen were 42 +/- 3 and 43 +/- 4 muM, respectively. The NADH oxidase was a heterodimeric flavoprotein with two subunits with molecular masses of 54 kDa and 46 kDa. Its gene sequences were identified, and the enzyme might represent a new type of NADH oxidase in anaerobes. An NADH-dependent peroxidase with a specific activity of 0.1 U/mg was also present in the cell extract of T. maritima.  相似文献   

4.
Glutamate dehydrogenase (GDH) (L-glutamate:NADP+ oxidoreductase, deaminating, EC 1.4.1.4) from the cellulolytic ruminal bacterium Ruminococcus flavefaciens has been purified and characterized. The native enzyme and subunit are 280 and 48 kDa, respectively, suggesting that the native enzyme is a hexamer. The enzyme requires 0.5 M KCl for optimal activity and has a pH optimum of 6.9 to 7.0. The Kms for ammonia, alpha-ketoglutarate, and glutamate are 19, 0.41, and 62 mM, respectively. The sigmoidal NADPH saturation curve revealed positive cooperativity for the binding of this coenzyme. The first residue in the N-terminal amino acid sequence from R. flavefaciens GDH was alanine, suggesting that the protein may be modified posttranslationally. Comparison of the N-terminal sequence with those of Escherichia coli, Salmonella typhimurium, and Clostridium symbiosum revealed only 39% amino acid homologies. The GDH from R. flavefaciens was unique in that its specific activity was highest during ammonia-limited growth but was not affected by ammonia shock treatment (20 mM).  相似文献   

5.
Glutamate dehydrogenase (GDH) (L-glutamate:NADP+ oxidoreductase, deaminating, EC 1.4.1.4) from the cellulolytic ruminal bacterium Ruminococcus flavefaciens has been purified and characterized. The native enzyme and subunit are 280 and 48 kDa, respectively, suggesting that the native enzyme is a hexamer. The enzyme requires 0.5 M KCl for optimal activity and has a pH optimum of 6.9 to 7.0. The Kms for ammonia, alpha-ketoglutarate, and glutamate are 19, 0.41, and 62 mM, respectively. The sigmoidal NADPH saturation curve revealed positive cooperativity for the binding of this coenzyme. The first residue in the N-terminal amino acid sequence from R. flavefaciens GDH was alanine, suggesting that the protein may be modified posttranslationally. Comparison of the N-terminal sequence with those of Escherichia coli, Salmonella typhimurium, and Clostridium symbiosum revealed only 39% amino acid homologies. The GDH from R. flavefaciens was unique in that its specific activity was highest during ammonia-limited growth but was not affected by ammonia shock treatment (20 mM).  相似文献   

6.
The NAD-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.2) from Laccaria bicolor was purified 410-fold to apparent electrophoretic homogeneity with a 40% recovery through a three-step procedure involving ammonium sulfate precipitation, anion-exchange chromatography on DEAE-Trisacryl, and gel filtration. The molecular weight of the native enzyme determined by gel filtration was 470 kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave rise to a single band of 116 kDa, suggesting that the enzyme is composed of four identical subunits. The enzyme was specific for NAD(H). The pH optima were 7.4 and 8.8 for the amination and deamination reactions, respectively. The enzyme was found to be highly unstable, with virtually no activity after 20 days at -75 degrees C, 4 days at 4 degrees C, and 1 h at 50 degrees C. The addition of ammonium sulfate improved greatly the stability of the enzyme and full activity was still observed after several months at -75 degrees C. NAD-GDH activity was stimulated by Ca2+ and Mg2+ but strongly inhibited by Cu2+ and slightly by the nucleotides AMP, ADP, and ATP. The Michaelis constants for NAD, NADH, 2-oxoglutarate, and ammonium were 282 &mgr;M, 89 &mgr;M, 1.35 mM, and 37 mM, respectively. The enzyme had a negative cooperativity for glutamate (Hill number of 0.3), and its Km value increased from 0.24 to 3.6 mM when the glutamate concentration exceeded 1 mM. These affinity constants of the substrates, compared with those of the NADP-GDH of the fungus, suggest that the NAD-GDH is mainly involved in the catabolism of glutamate, while the NADP-GDH is involved in the catalysis of this amino acid. Copyright 1997 Academic Press. Copyright 1997 Academic Press  相似文献   

7.
Polynucleotide kinase (EC 2.7.1.78) has been purified from rat testes, and an approximately 2000-fold purification was obtained. The purified enzyme had an Mr of 38000 +/- 3800. The enzyme phosphorylated micrococcal nuclease-treated calf thymus DNA and (dT)10 while 5'-HO-tRNA was a very poor substrate. A certain degree of specificity towards purine-containing 5'-HO-nucleotides was observed. The polynucleotide kinase had an absolute requirement for a divalent cation. Both Mg2+ and Mn2+ could be used, but 10 mM MgCl2 gave optimal activity. The monovalent cations Na+, K+ and NH4+ all stimulated enzyme activity, and the optimal concentration was 0.1 M. The enzyme was inhibited by inorganic phosphate, pyrophosphate and sulphate. A 50% inhibition was obtained with 20, 0.3 and 2 mM, respectively. At 2 mM MgCl2, 1 mM spermine enhanced the enzyme activity 3-times. The apparent KATP was estimated to be 36 microM and KHO-DNA was found to be 2 microM.  相似文献   

8.
Methanosphaera stadtmanae (DSM 3091) is a methanogen that requires H2 and CH3OH for methanogenesis. The organism does not possess an F420-dependent hydrogenase and only low levels of F420. It does however possess NADP+:F420 oxidoreductase activity. The NADP+:F420 oxidoreductase, the enzyme which catalyses the electron transfer between NADP+ and F420 in this organism, was purified and characterized. NAD+, NADH, FMN, and FAD could not be used as electron acceptors. Optimal pH for F420 reduction was 6.0, and 8.5 for NADP+ reduction. During the purification process, it was noted that precipitation with (NH4)2SO4 increased total activity 16-fold but reduced the stability of the enzyme. However, recombination of cell-free extracts with resuspended 65-90% (NH4)2SO4 pellet returned activity to near cell-free extract levels. Neither high salt or protease inhibitors were effective in stabilizing the activity of the partially purified enzyme. The purified enzyme from M. stadtmanae possessed a molecular weight of 148 kDa as determined by gel filtration chromatography and native-PAGE, consisting of alpha, beta, and gamma subunits of 60, 50, and 45 kDa, respectively, using SDS-PAGE. The Km values were 370 microM for NADP+, 142 microM for NADPH, 62.5 microM for F420, and 7.7 microM for F420H2. These values were different from the Km values observed in the cell-free extract.  相似文献   

9.
A cDNA of bovine brain glutamate dehydrogenase (GDH) was isolated from a cDNA library by recombinant PCR. The isolated cDNA has an open-reading frame of 1677 nucleotides, which codes for 559 amino acids. The expression of the recombinant bovine brain GDH enzyme was achieved in E. coli. BL21 (DE3) by using the pET-15b expression vector containing a T7 promoter. The recombinant GDH protein was also purified and characterized. The amino acid sequence was found 90% homologous to the human GDH. The molecular mass of the expressed GDH enzyme was estimated as 50 kDa by SDS-PAGE and Western blot using monoclonal antibodies against bovine brain GDH. The kinetic parameters of the expressed recombinant GDH enzymes were quite similar to those of the purified bovine brain GDH. The Km and Vmax values for NAD+ were 0.1 mM and 1.08 micromol/min/mg, respectively. The catalytic activities of the recombinant GDH enzymes were inhibited by ATP in a concentration-dependent manner over the range of 10 - 100 microM, whereas, ADP increased the enzyme activity up to 2.3-fold. These results indicate that the recombinant-expressed bovine brain GDH that is produced has biochemical properties that are very similar to those of the purified GDH enzyme.  相似文献   

10.
A cold-labile glutamate dehydrogenase (GDH, EC 1.4.1.3) has been purified to homogeneity from the crude extracts of Azospirillum brasilense. The purified enzyme shows a dual coenzyme specificity, and both the NADPH and NADH-dependent activities are equally cold-sensitive. The enzyme is highly specific for the substrates 2-oxoglutarate and glutamate. Kinetic studies with GDH indicate that the enzyme is primarily designed to catalyse the reductive amination of 2-oxoglutarate. The NADP+-linked activity of GDH showed Km values 2.5 X 10(-4) M and 1.0 X 10(-2) M for 2-oxoglutarate and glutamate respectively. NAD+-linked activity of GDH could be demonstrated only for the amination of 2-oxoglutarate but not for the deamination of glutamate. The Lineweaver-Burk plot with ammonia as substrate for NADPH-dependent activity shows a biphasic curve, indicating two apparent Km values (0.38 mM and 100 mM) for ammonia; the same plot for NADH-dependent activity shows only one apparent Km value (66 mM) for ammonia. The NADPH-dependent activity shows an optimum pH from 8.5 to 8.6 in Tris/HCl buffer, whereas in potassium phosphate buffer the activity shows a plateau from pH 8.4 to 10.0. At high pH (greater than 9.5) amino acids in general strongly inhibit the reductive amination reaction by their competition with 2-oxoglutarate for the binding site on GDH. The native enzyme has a Mr = 285000 +/- 20000 and appears to be composed of six identical subunits of Mr = 48000 +/- 2000. The GDH level in A. brasilense is strongly regulated by the nitrogen source in the growth medium.  相似文献   

11.
Glutamate dehydrogenase (GDH) activity was determined in high-speed fractions (100,000 g for 60 min) obtained from whole rat brain homogenates after removal of a low-speed pellet (480 g for 10 min). Approximately 60% of the high-speed GDH activity was particulate (associated with membrane) and the remaining was soluble (probably of mitochondrial matrix origin). Most of the particulate GDH activity resisted extraction by several commonly used detergents, high concentration of salt, and sonication; however, it was largely extractable with the cationic detergent cetyltrimethylammonium bromide (CTAB) in hypotonic buffer solution. The two GDH activities were purified using a combination of hydrophobic interaction, ion exchange, and hydroxyapatite chromatography. Throughout these purification steps the two activities showed similar behavior. Kinetic studies indicated similar Km values for the two GDH fractions for the substrates alpha-ketoglutarate, ammonia, and glutamate; however, there were small but significant differences in Km values for NADH and NADPH. Although the allosteric stimulation by ADP and L-leucine and inhibition by diethylstilbestrol was comparable, the two GDH components differed significantly in their susceptibility to GTP inhibition in the presence of 1 mM ADP, with apparent Ki values of 18.5 and 9.0 microM GTP for the soluble and particulate fractions, respectively. The Hill plot coefficient, binding constant, and cooperativity index for the GTP inhibition were also significantly different, indicating that the two GDH activities differ in their allosteric sites. In addition, enzyme activities of the two purified proteins exhibited a significant difference in thermal stability when inactivated at 45 degrees C and pH 7.4 in 50 mM phosphate buffer.  相似文献   

12.
Glutamate dehydrogenase (GDH) of Clostridium symbiosum, like GDH from other species, is inactivated by pyridoxal 5'-phosphate (pyridoxal-P). This inactivation follows a similar pattern to that for beef liver GDH, in which a non-covalent GDH-pyridoxal-P complex reacts slowly to form a covalent complex in which pyridoxal-P is in a Schiff's-base linkage to lysine residues. [formula: see text] The equilibrium constant of this first-order reaction on the enzyme surface determines the final extent of inactivation observed [S. S. Chen and P. C. Engel (1975) Biochem. J. 147, 351-358]. For clostridial GDH, the maximal inactivation obtained was about 70%, reached after 10 min with 7 mM pyridoxal-P at pH 7. In keeping with the model, (a) inactivation became irreversible after reduction with NaBH4. (b) The NaBH4-reduced enzyme showed a new absorption peak at 325 nm. (c) Km values for NAD+ and glutamate were unaltered, although Vmax values were decreased by 70%. Kinetic analysis of the inactivation gave values of 0.81 +/- 0.34 min-1 for k3 and 3.61 +/- 0.95 mM for k2/k1. The linear plot of 1/(1-R) against 1/[pyridoxal-P], where R is the limiting residual activity reached in an inactivation reaction, gave a slightly higher value for k2/k1 of 4.8 +/- 0.47 mM and k4 of 0.16 +/- 0.01 min-1. NADH, NAD+, 2-oxoglutarate, glutarate and succinate separately gave partial protection against inactivation, the biggest effect being that of 40 mM succinate (68% activity compared with 33% in the control). Paired combinations of glutarate or 2-oxoglutarate and NAD+ gave slightly better protection than the separate components, but the most effective combination was 40 mM 2-oxoglutarate with 1 mM NADH (85% activity at equilibrium). 70% inactivated enzyme showed an incorporation of 0.7 mM pyridoxal-P/mol subunit, estimated spectrophotometrically after NaBH4 reduction, in keeping with the 1:1 stoichiometry for the inactivation. In a sample protected with 2-oxoglutarate and NADH, however, incorporation was 0.45 mol/mol, as against 0.15 mol/mol expected (85% active). Tryptic peptides of the enzyme, modified with and without protection, were purified by HPLC. Two major peaks containing phosphopyridoxyllysine were unique to the unprotected enzyme. These peaks yielded three peptide sequences clearly homologous to sequences of other GDH species. In each case, a gap at which no obvious phenylthiohydantoin-amino-acid was detected, matched a conserved lysine position. The gap was taken to indicate phosphopyridoxyllysine which had prevented tryptic cleavage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Glutamate dehydrogenase (L-glutamate:NAD+ oxidoreductase (deaminating); EC 1.4.1.2) has been purified from Peptostreptococcus asaccharolyticus in a single step using dye-ligand chromatography. The enzyme (GDH) was present in high yields and was stabilized in crude extracts. A subunit molecular weight of 49000 +/- 500 was determined by SDS polyacrylamide gel electrophoresis and six bands were obtained after cross-linking the subunits with dimethyl suberimidate. This bacterial GDH was predominantly NAD+-linked, but was able to utilize both NADP+ and NADPH at 4% of the rates with NAD+ and NADH, respectively. An investigation of the amino acid specificity revealed some similarities with GDH from mammalian sources and some clear differences. The values of apparent Km for the substrates ammonia, 2-oxoglutarate, NADH, NAD+ and glutamate were 18.4, 0.82, 0.066, 0.031 and 6 mM, respectively. The P. asaccharolyticus GDH was not regulated by purine nucleotides, but was subject to strong inhibition with increasing ionic strength.  相似文献   

14.
K Ma  F T Robb    M W Adams 《Applied microbiology》1994,60(2):562-568
Thermococcus litoralis is a strictly anaerobic archaeon that grows at temperatures up to 98 degrees C by fermenting peptides. Little is known about the primary metabolic pathways of this organism and, in particular, the role of enzymes that are dependent on thermolabile nicotinamide nucleotides. In this paper we show that the cytoplasmic fraction of cell extracts contained NADP-specific glutamate dehydrogenase (GDH) and NADP-specific alcohol dehydrogenase (ADH) activities, neither of which utilized NAD as a cofactor. The GDH is composed of identical subunits having an M(r) of 45,000 and had an optimal pH and optimal temperature for glutamate oxidation of 8.0 and > 95 degrees C, respectively. Potassium phosphate (60 mM), KCl (300 mM), and NaCl (300 mM) each stimulated the rate of glutamate oxidation activity between two- and threefold. For glutamate oxidation the apparent Km values at 80 degrees C for glutamate and NADP were 0.22 and 0.029 mM, respectively, and for 2-ketoglutarate reduction the apparent Km values for 2-ketoglutarate, NADPH, and NH4+ were 0.16, 0.14, and 0.63 mM, respectively. This enzyme is the first NADP-specific GDH purified form a hyperthermophilic organism. T. litoralis ADH is a tetrameric protein composed of identical subunits having an M(r) of 48,000; the optimal pH and optimal temperature for ethanol oxidation were 8.8 and 80 degrees C, respectively. In contrast to GDH activity, potassium phosphate (60 mM), KCl (0.1 M), and NaCl (0.3 M) inhibited ADH activity, whereas (NH4)2SO4 (0.1 M) had a slight stimulating effect. This enzyme exhibited broad substrate specificity for primary alcohols, but secondary alcohols were not oxidized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A new class of glutamate dehydrogenase (GDH) is reported. The GDH of Streptomyces clavuligerus was purified to homogeneity and characterized. It has a native molecular mass of 1,100 kDa and exists as an alpha(6) oligomeric structure composed of 183-kDa subunits. GDH, which requires AMP as an essential activator, shows a maximal rate of catalysis in 100 mm phosphate buffer, pH 7.0, at 30 degrees C. Under these conditions, GDH displayed hyperbolic behavior toward ammonia (K(m), 33 mm) and sigmoidal responses to changes in alpha-ketoglutarate (S(0.5) 1.3 mm; n(H) 1.50) and NADH (S(0.5) 20 microm; n(H) 1.52) concentrations. Aspartate and asparagine were found to be allosteric activators. This enzyme is inhibited by an excess of NADH or NH(4)(+), by some tricarboxylic acid cycle intermediates and by ATP. This GDH seems to be a catabolic enzyme as indicated by the following: (i) it is NAD-specific; (ii) it shows a high value of K(m) for ammonia; and (iii) when S. clavuligerus was cultured in minimal medium containing glutamate as the sole source of carbon and nitrogen, a 5-fold increase in specific activity of GDH was detected compared with cultures provided with glycerol and ammonia. GDH has 1,651 amino acids, and it is encoded by a DNA fragment of 4,953 base pairs (gdh gene). It shows strong sequence similarity to proteins encoded by unidentified open reading frames present in the genomes of species belonging to the genera Mycobacterium, Rickettsia, Pseudomonas, Vibrio, Shewanella, and Caulobacter, suggesting that it has a broad distribution. The GDH of S. clavuligerus is the first member of a class of GDHs included in a subfamily of GDHs (large GDHs) whose catalytic requirements and evolutionary implications are described and discussed.  相似文献   

16.
Glycerol-3-phosphate oxidoreductase (sn-glycerol 3-phosphate: NAD+ 2-oxidoreductase, EC 1.1.1.8) from human placenta has been purified by chromatography on 2,4,6-trinitrobenzenehexamethylenediamine-Sepharose, DEAE-Sephadex A-50 and 5'-AMP-Sepharose 4B approximately 15800-fold with an overall yield of about 19%. The final purified material displayed a specific activity of about 88 mumol NADH min-1 mg protein-1 and a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The native molecular mass, determined by Ultrogel AcA 44 filtration, was 62000 +/- 2000 whereas the subunit molecular mass, established on polyacrylamide gel in the presence of 0.1% sodium dodecyl sulphate, was 38000 +/- 500. The isoelectric point of the enzyme protein, determined by column isoelectric focusing, was found to be 5.29 +/- 0.09. The pH optimum of the placental enzyme was in the range 7.4-8.1 for dihydroxyacetone phosphate reduction and 8.7-9.2 for sn-glycerol 3-phosphate oxidation. The apparent Michaelis constants (Km) for dihydroxyacetone phosphate, NADH, sn-glycerol 3-phosphate and NAD+ were 26 microM, 5 microM, 143 microM and 36 microM respectively. The activity ratio of cytoplasmic glycerol-3-phosphate oxidoreductase to mitochondrial glycerol-3-phosphate dehydrogenase in human placental tissue was 1:2. The consumption of oxygen by human placental mitochondria incubated with the purified glycerol-3-phosphate oxidoreductase, NADH and dihydroxyacetone phosphate was similar to that observed in the presence of sn-glycerol 3-phosphate. The possible physiological role of glycerol-3-phosphate oxidoreductase in placental metabolism is discussed.  相似文献   

17.
A 250- to 300-fold purification of a nicotinamide adenine denucleotide phosphate (NADP)-dependent glutamate dehydrogenase (GDH, E.C. 1.4.1.4) with a yield of 60% from a thermophilic bacillus is described. More than one NADP-specific GDH was detected by polyacrylamide gel electrophoresis. The enzyme is of high molecular weight (approximately 2 X 10-6), similar to that of the beef and frog liver GDH. The pI of the thermophilic GDH is at pH 5.24. The enzyme is highly thermostable at the pH range of 5.8 to 9.0. The purified GDH, unlike the crude enzyme, was very labile at subzero temperatures. An unidentified factor(s) from the crude cell-free extract prevented the inactivation of the purified GDH at -70 C. Various reactants of the GDH system and D-glutamate also protected, to some extent, the enzyme from inactivation at -70 C. From the Michaelis constants for glutamate (1.1 X 10-2M), NADP (3 X 10-4M), ammonia (2.1 X 10-2M), alpha-ketoglutarate (1.3 X 10-3M), and reduced NADP (5.3 X 10-5M), it is suggested that the enzyme catalyzes in vivo the formation of glutamate from ammonia and alpha-ketoglutarate. The amination of alpha-ketoglutarate and deamination of glutamate by the thermophilic GDH are optimal at the pH values of 7.2 and 8.4, respectively.  相似文献   

18.
alpha-Ketoglutarate dehydrogenase has been demonstrated for the first time in cell extracts from the filamentous fungus Aspergillus niger. A minimum protein concentration of 5 mg/ml is necessary for detecting enzyme activity, but a maximum of ca. 0.060 mumol/min per mg of protein is observed only when the protein concentration is above 9 mg/ml. alpha-Ketoglutarate can partly stabilize the enzyme against dilution in the assay system. Neither bovine serum albumin nor a variety of substrates or effectors of the enzyme could stabilize the enzyme against inactivation by dilution. A kinetic analysis of the enzyme revealed Michaelis-Menten kinetics with respect to alpha-ketoglutarate, coenzyme A, and NAD. Thiamine PPi was required for maximal activity. NADH, oxaloacetate, succinate, and cis-aconitate were found to inhibit the enzyme; AMP was without effect. Monovalent cations including NH4+ were inhibitory at high concentrations (greater than 20 mM). The highest enzyme activity was found in rapidly growing mycelia (glucose-NH4+ or glucose-peptone medium). We discuss the possibility that citric acid accumulation is caused by oxaloacetate and NADH inhibition of the alpha-ketoglutarate dehydrogenase of A. niger.  相似文献   

19.
K B Busch  H Fromm 《Plant physiology》1999,121(2):589-597
Succinic semialdehyde dehydrogenase (SSADH) is one of three enzymes constituting the gamma-aminobutyric acid shunt. We have cloned the cDNA for SSADH from Arabidopsis, which we designated SSADH1. SSADH1 cDNA encodes a protein of 528 amino acids (56 kD) with high similarity to SSADH from Escherichia coli and human (>59% identity). A sequence similar to a mitochondrial protease cleavage site is present 33 amino acids from the N terminus, indicating that the mature mitochondrial protein may contain 495 amino acids (53 kD). The native recombinant enzyme and the plant mitochondrial protein have a tetrameric molecular mass of 197 kD. Fractionation of plant mitochondria revealed its localization in the matrix. The purified recombinant enzyme showed maximal activity at pH 9.0 to 9.5, was specific for succinic semialdehyde (K(0.5) = 15 microM), and exclusively used NAD+ as a cofactor (Km = 130 +/- 77 microM). NADH was a competitive inhibitor with respect to NAD+ (Ki = 122 +/- 86 microM). AMP, ADP, and ATP inhibited the activity of SSADH (Ki = 2.5-8 mM). The mechanism of inhibition was competitive for AMP, noncompetitive for ATP, and mixed competitive for ADP with respect to NAD+. Plant SSADH may be responsive to mitochondrial energy charge and reducing potential in controlling metabolism of gamma-aminobutyric acid.  相似文献   

20.
Two membrane-bound glutamate dehydrogenases were found in adult Dirofilaria immitis, an NAD-linked enzyme (EC 1.4.1.2) in the cytosol (C-GDH) and an enzyme equally reactive with NAD or NADP (EC 1.4.1.3) in the mitochondria (M-GDH). The cytosolic enzyme had a pH optimum of 7.8-8.0 and exhibited 30% more activity at 25 C than at 37 C (pH 8.0). The mitochondrial enzyme had a pH optimum at 8.4 and exhibited 27% more activity at 37 C than at 25 C (pH 8.4); it was also more sensitive to heat denaturation. Gel filtration of worm subfractions separated four peaks of C-GDH activity with molecular weights of approximately 610, 285, 180, and less than 100 thousand, and a single major peak of M-GDH activity with a molecular weight of about 335,000. When assayed at pH 8, 37 C, and 200 microM NADH, the Km for the substrate, alpha-ketoglutarate, was equivalent for the two enzymes, but the Km for ADP (activator) was five times greater for M-GDH. When the two enzymes were assayed at pH 8.0, 37 C, and 100 microM NADH, 1 mM ADP approximately doubled and 1 mM ATP halved the velocity observed for each enzyme with no effector present. Under these assay conditions AMP, IDP, GDP, and GTP had opposite effects on the reaction velocities for the two enzymes. When the assay conditions were changed, the effects of added purine nucleotides varied, even directionally. Addition of up to 5 mM glutamate (product) had no significant effect on C-GDH kinetics, nor on the substrate Km of M-GDH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号