首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two possible cellular pathways of catecholamines from the chromaffin vesicles of PC12 cells to the surrounding medium are explored in this study. The direct one circumventing the cytoplasm can be activated in alpha-toxin-permeabilized cells with micromolar levels of free Ca2+. Catecholamine metabolites formed in the cytoplasm (i.e., 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylethanol) are neither formed nor released from the cells under these conditions. However, when vesicular catecholamines were discharged into the cytoplasm by addition of the ionophore nigericin, such metabolites are formed and released into the medium independent of Ca2+. Both types of experiments provide direct evidence for the operation of Ca2+-induced exocytosis of dopamine and noradrenaline in permeabilized PC12 cells. The Ca2+ dependence of dopamine or noradrenaline release, as measured by the determination of the endogenous catecholamines using the high-performance liquid chromatography technique, exhibits two different phases. One is already activated below 1 microM free Ca2+ and plateaus at 1-5 microM free Ca2+, while a second occurs in the presence of larger amounts of free Ca2+ (10-100 microM). Ca2+-induced catecholamine release from the permeabilized cells can be modulated in different ways: It is enhanced by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate and the diacylglycerol 1-oleyl-2-acetylglycerol provided Mg2+/ATP is present, and it is inhibited by guanosine 5'-O-(3-thiotriphosphate). The latter effect is abolished by pretreatment of the cells with pertussis toxin but not by cholera toxin. Thus, it appears that Ca2+-induced exocytosis can be modulated via the protein kinase C system, as well as via GTP binding proteins.  相似文献   

2.
In the present study, the release of the neuropeptide cholecystokinin-8 (CCK) from purified nerve terminals (synaptosomes) of the rat hippocampus was characterized with respect to the subcellular distribution, the release upon addition of various agents, the release kinetics, the Ca2+ and ATP dependence of release, and the relationship between CCK release and elevations of intraterminal free Ca2+ concentration ([Ca]i). These characteristics were compared with those for the release of classical transmitters in similar preparations. CCK-like immunoreactivity (CCK-LI) is enriched in the purified synaptosomal fraction of hippocampus homogenates and released in a strictly Ca2(+)-dependent manner upon chemical depolarization, addition of 4-aminopyridine, or stimulation with the Ca2+ ionophore ionomycin. The presence of Ca2+ in the medium significantly stimulates the basal efflux of CCK-LI from synaptosomes. The release upon stimulation develops gradually in time with no significant release in the first 10 s and levels off after 3 min of depolarization. At this time, a large amount of CCK-LI is still present inside the synaptosomes. A correlation exists between the release of CCK-LI and the elevations of [Ca]i. The release of CCK-LI is decreased, but not blocked, upon ATP depletion. These characteristics markedly differ from those for classical transmitters, which show a fast component of Ca2(+)-dependent (exocytotic) release, an absolute dependence on cellular ATP, and no marked stimulation of basal efflux in the presence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Cholinergic nerve terminals were affinity purified from rat caudate nucleus. On stimulation with both 22.6 mM KCl and 50 microM veratridine, ATP was released in a Ca2+-dependent manner. The molar ratio of released acetylcholine to ATP (9:1) was closer to that found in isolated cholinergic vesicles (7:1) than whole terminals (3:1). Extracellular [14C]ATP was rapidly metabolized by these terminals to adenosine and inosine via ectonucleotidases. The terminals had a saturable, high-affinity uptake mechanism for adenosine (Km = 16.6 microM). Veratridine stimulation also caused the Ca2+-dependent release of nucleosides in a dipyridamole-sensitive manner. Both theophylline treatment and inhibition of extracellular ATP breakdown resulted in increased ATP and nucleoside release. Extracellular adenosine was shown to inhibit acetylcholine release, probably via the A1 receptor. The role of extracellular purines at the cholinergic nerve terminal is discussed.  相似文献   

4.
Abstract: Transmitter release at the nerve terminal is mediated by the influx of Ca2+ through voltage-sensitive calcium channels (VSCCs). Many types of VSCCs have been found in neurons (T, N, L, and P), but uncertainty remains about which ones are involved in neuronal excitation-secretion coupling. Specific ligands for the L- and N-type VSCCs were used to determine which of these subtypes might be involved in the K+-evoked [3H]noradrenaline release from superfused rat brain cortical and hippocampal synaptosomes. In cortical presynaptic terminals the 1,4-dihydropyridine agonist Bay K 8644 enhanced the K+ (15 m M )-evoked [3H]noradrenaline release. This effect was reversed by the 1,4-dihydropyridine antagonists nimodipine and nitrendipine. The L-type VSCC ligands had no effect on hippocampal synaptosomes. In contrast, the N-type VSCC blocker ω-conotoxin markedly reduced the K+-evoked [3H]noradrenaline release in nerve terminals from both regions. Inhibition was greater in hippocampal synaptosomes. When applied together the inhibitory actions of nimodipine and ω-conotoxin were approximately additive. These findings indicate that both L- and N-type VSCCs participate in noradrenaline release in rat brain cortex and suggest that noradrenergic terminals in the two regions examined may have distinct populations of VSCCs: L type in cortex and N type in hippocampus.  相似文献   

5.
Using a hippocampal subcellular fraction enriched in mossy fiber synaptosomes, evidence was obtained indicating that adenosine derived from a presynaptic pool of ATP may modulate the release of prodynorphin-derived peptides. and glutamic acid from mossy fiber terminals. Synaptosomal ATP was released in a Ca2+-dependent manner by K+-induced depolarization. The rapid hydrolysis of extracellular [14C]ATP in the presence of intact mossy fiber synaptosomes resulted in the production of [14C]adenosine. Micromolar concentrations of a stable adenosine analogue, 2-chloroadenosine, inhibited the K+-stimulated release of both dynorphin B and dynorphin A(1-8). 2-Chloroadenosine failed to suppress the evoked release of glutamic acid, measured in these same superfusates, unless the mossy fiber synaptosomes were pretreated with D-aspartic acid to deplete the cytosolic, Ca2+-independent, pool of this acidic amino acid. In synaptosomes pretreated in this manner, release of the remaining Ca2+-dependent pool of glutamic acid was significantly inhibited by NiCl2, 2-chloroadenosine, 5'-N-ethylcarboxamidoadenosine, cyclohexyladenosine, and R(-)-N6(2-phenylisopropyl)adenosine, but not by ATP. 2-Chloroadenosine-induced inhibition was reversed when the external CaCl2 concentration was raised from 1.8 mM to 6 mM. 8-Phenyltheophylline, an adenosine receptor antagonist, effectively blocked the inhibitory effects of 2-chloroadenosine on mossy fiber synaptosomes and significantly enhanced the K+-evoked release of both glutamic acid and dynorphin A(1-8) when added alone to the superfusion medium. These results support the proposition that depolarized hippocampal mossy fiber synaptosomes release endogenous ATP and are capable of forming adenosine from extracellular ATP, and that endogenous adenosine may act at a presynaptic site to inhibit the further release of glutamic acid and the prodynorphin-derived peptides.  相似文献   

6.
It has been proposed that (-)-nicotine can activate release-stimulating presynaptic nicotinic acetylcholine receptors (nAChRs) on glutamatergic nerve terminals to release glutamate, which in turn stimulates the release of noradrenaline (NA) and dopamine (DA) via presynaptic ionotropic glutamate receptors on catecholaminergic terminals. The objective of this study was to compare the function of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazide-4-propionic acid (AMPA) glutamate receptors in synaptosomes of rat hippocampus and striatum following acute and chronic (-)-nicotine administration. In hippocampal synaptosomes, prelabeled with [3H]NA, both the NMDA- and AMPA-evoked releases were higher in (-)-nicotine-treated (10 days) than in (-)-nicotine-treated (1 day) or vehicle-treated (1 or 10 days) rats. In striatal synaptosomes prelabeled with [3H]DA, the NMDA-evoked, but not the AMPA-evoked, release of [3H]DA was higher in (-)-nicotine-treated (10 days) than in nicotine-treated (1 day) or vehicle-treated (1 or 10 days) animals. Chronic (-)-nicotine did not affect catecholamine uptake, basal release and release evoked by high-K+ depolarization. Thus, chronic exposure to nicotine enhances the function of ionotropic glutamate receptors mediating noradrenaline release in the hippocampus and dopamine release in the striatum.  相似文献   

7.
The characteristics of the release of endogenous dopamine and noradrenaline from rat brain synaptosomes were studied using HPLC with an electrochemical detector. The spontaneous release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. Also, the high-K+ (30 mM)-evoked release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. From these results, the ratio of the Ca2(+)-dependent component to the total release of noradrenaline seemed to be similar to that of dopamine. On the other hand, 20 microM La3+ or 1 microM diltiazem inhibited both the spontaneous and 30 mM K(+)-evoked release of dopamine by approximately 50-60% but inhibited neither the spontaneous nor the 30 mM K(+)-evoked release of noradrenaline. The K(+)-evoked rise in intrasynaptosomal Ca2+ concentration was mostly blocked in Ca2(+)-free medium or 100 microM La3(+)-containing medium but was only partially blocked by 20 microM La3+ or 1 microM diltiazem. These data indicate alternative possibilities in that the Ca2(+)-dependent release of noradrenaline might be less sensitive to a change of intracellular Ca2+ concentration than that of dopamine and that the calcium channels directly involved in the noradrenaline release may be more resistant to diltiazem and La3+ than those involved in the dopamine release.  相似文献   

8.
The effect of N-methyl-D,L-aspartic acid (NMA) on extracellular amino acids was studied in the rabbit hippocampus with the brain dialysis technique. Administration of 0.5 or 5 mM NMA caused a concentration-dependent liberation of taurine and phosphoethanolamine (PEA). Taurine increased by 1,200% and PEA by 2,400% during perfusion with 5 mM NMA whereas most other amino acids rose by 20-100%. The effect of NMA appeared to be receptor-mediated, as coperfusion with D-2-amino-5-phosphonovaleric acid curtailed the NMA response by some 90%. The NMA-stimulated release of taurine and PEA was suppressed when Ca2+ was omitted and further inhibited when Co2+ was included in the perfusion medium. The effect of NMA was mimicked by the endogenous NMA agonist quinolinic acid and the partial NMA agonist D,L-cis-2,3-piperidine dicarboxylic acid. Although the NMA-evoked release of taurine and PEA was Ca2+-dependent in vivo, NMA had no effect on Ca2+ accumulation in hippocampal synaptosomes. The previously reported NMA-induced activation of dendritic Ca2+ spikes and the lack of effect on synaptosomal Ca2+ uptake suggest that taurine and PEA are released from sites other than nerve terminals, possibly from dendrosomatic sites. This notion was strengthened by the absence of an effect of NMA on the efflux of radiolabelled taurine from hippocampal synaptosomes. In contrast, high K+ stimulated synaptosomal uptake of Ca2+ and release of taurine.  相似文献   

9.
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.  相似文献   

10.
The wide-ranging neuronal actions of excitatory amino acids, such as glutamate, are thought to be mediated mainly by postsynaptic N-methyl-D-aspartate (NMDA) and non-NMDA receptors. We now report the existence of presynaptic glutamate receptors in isolated nerve terminals (synaptosomes) prepared from hippocampus, olfactory bulb, and cerebral cortex. Activation of these receptors by NMDA or non-NMDA agonists, in a concentration-dependent manner, resulted in Ca(2+)-dependent release of noradrenaline from vesicular transmitter stores. The NMDA-stimulated release was potentiated by glycine and was blocked by Mg2+ and selective NMDA antagonists. In contrast, release stimulated by selective non-NMDA agonists was blocked by 6-cyano-7-nitroquinoxaline-2,3- dione, but not by Mg2+ or NMDA antagonists. Our data suggest that the presynaptic glutamate receptors can be classified pharmacologically as both the NMDA and non-NMDA types. These receptors, localized on nerve terminals of the locus ceruleus noradrenergic neurons, may play an important role in interactions between noradrenaline and glutamate.  相似文献   

11.
We have investigated transmitter release from small and large dense-core vesicles in nerve terminals isolated from guinea pig hippocampus. Small vesicles are found in clusters near the active zone, and large dense-core vesicles are located at ectopic sites. The abilities of Ca2+ channel activation and uniform elevation of Ca2+ concentration (with ionophores) to evoke secretion of representative amino acids, catecholamines, and neuropeptides were compared. For a given increase in Ca2+ concentration, ionophore was less effective than Ca2+ channel activation in releasing amino acids, but not in releasing cholecystokinin-8. Titration of the average Ca2+ concentration showed that the Ca2+ affinity for cholecystokinin-8 secretion was higher than that for amino acids. Catecholamine release showed intermediate behavior. It is concluded that neuropeptide release is triggered by small elevations in the Ca2+ concentration in the bulk cytoplasm, whereas secretion of amino acids requires higher elevations, as produced in the vicinity of Ca2+ channels.  相似文献   

12.
Neuronal varicosities, isolated from the myenteric plexus of guinea pig ileum longitudinal muscle, were incubated with [3H]noradrenaline to label the contents of the noradrenergic secretory vesicles. Exposure of these varicosities to KCl, nicotine, or acetylcholine resulted in the Ca2+ -dependent release of [3H]noradrenaline. Veratridine also evoked a large efflux of [3H] from this preparation, but this release was only partially Ca2+ dependent. The alpha 2-adrenoceptor agonist, clonidine, inhibited the K+-, nicotine-, and acetylcholine-induced release of [3H]noradrenaline. Similarly, exogenously administered (-)noradrenaline was an effective inhibitor of the K+ -evoked release of [3H]noradrenaline. The alpha 2-adrenoceptor antagonist, yohimbine, antagonized the inhibitory actions of both clonidine and (-)noradrenaline on the K+ -evoked release of [3H]noradrenaline from myenteric varicosities. Nicotine, acetylcholine, KCl, and veratridine also released ATP from these guinea pig ileal myenteric varicosities. However, the evoked release of ATP was unaffected by clonidine. These results indicate that myenteric varicosities can take up and release [3H]noradrenaline and that they possess presynaptic alpha 2-adrenoceptors which, when activated, inhibit the release of [3H]noradrenaline. These receptors may play a role in modulating the release of noradrenaline in the myenteric plexus in vivo. In addition, the present results suggest that ATP and [3H]noradrenaline may not be released from the same population of secretory vesicles in neuronal varicosities isolated from guinea pig ileum longitudinal muscle.  相似文献   

13.
J.N. Sinha  H. Dietl  A. Philippu 《Life sciences》1980,26(21):1751-1760
The posterior hypothalamus of anaesthetized cats was superfused through a push-pull cannula and the release of endogenous catecholamines was determined in the superfusate which was continuously collected in 15 min periods. Fall in blood pressure elicited by nitroprusside or bleeding led to an increased rate of release of noradrenaline, adrenaline and dopamine in the hypothalamus. Transection of the brain causal to hypothalamus greatly reduced the rate of resting release of the catecholamines and abolished the enhancing effects of bleeding and nitroprusside. Determination of the catecholamines in samples which were collected in 90 s periods suggested a different pattern of release of the three catecholamines. Further shortening of the collection period (10 s) showed that the fall in blood pressure immediately increased the release of dopamine, while the rates of release of noradrenaline and adrenaline were increased gradually. Hypotension did not influence the rates of release of the catecholamines in the anterior hypothalamus. It is concluded that dopamine, adrenaline and noradrenaline systems of the hypothalamus are involved in the regulation of the arterial blood pressure. The different patterns of release might indicate that dopamine exerts a different function from those of noradrenaline and adrenaline in the normalization of the blood pressure after acute hypotension.  相似文献   

14.
Two proteins present in noradrenergic vesicles of the splenic nerve (dopamine beta-hydroxylase and chromogranin A) are released into the perfusate from the spleen when the splenic nerve is stimulated. Experiments in which drugs were added to the perfusion fluid showed that the proteins were released from terminals of the splenic nerve. There was a correlation between the amounts of the proteins released and the quantity of noradrenaline released; and the release process was dependent upon calcium. It is suggested that the proteins are released from the large dense-cored vesicles present in the terminals of the splenic nerve, and that secretion from these vesicles occurs by exocytosis.  相似文献   

15.
Summary Release of endogenous catecholamines (CA) by electrical nerve stimulation (NS) was studied in the isolated perfused spleen of the Atlantic cod,Gadus morhua. An HPLC-system for the analysis of endogenously released CA is described. Cocaine (COC) was used to block neuronal re-uptake of endogenous CA released by NS. Splanchnic NS at frequencies of 1–40 Hz for 20 s resulted in release of noradrenaline (NA) and adrenaline (A) with a maximal total overflow at 20 Hz for both amines. The release of CA was frequency-dependent. COC (0.1 mmol·l-1) increased NS-evoked (40 Hz) overflow of NA and A by 4.8 and 2.2 times, respectively, and reduced the overflow of dihydroxyphenylglycol (DOPEG) to spontaneous efflux levels or less. It can be concluded that the HPLC-technique used was adequate for measurement of NS-evoked release of endogenous CA and DOPEG from the isolated perfused cod spleen, and the model presented can therefore be used when studying adrenergic mechanisms in fish spleen.Abbreviations A adrenaline - CA catecholamines - COC cocaine - DA dopamine - DHBA 3,4-dihydroybenzylamine hydrobromide - DOPAC 3,4-dihydroxyphenylacetic acid - DOPEG 3,4-dihydroxyphenylglycol - l-DOPA 3,4-dihydroxyphenylalanine - NA noradrenaline - NS nerve stimulation - PCA perchloric acid  相似文献   

16.
Release of preaccumulated, tritium-labeled dopamine ([3H]DA) from preparations of isolated nerve terminals (synaptosomes) of rat median eminence (ME) and corpus striatum (CS) was examined over short time intervals (1-20 s). In both preparations, basal efflux of [3H]DA was linear with time. Depolarization with high K+ resulted in an initial rapid release of [3H]DA which stabilized by 20 s, whereas veratridine elicited an increased rate of release over basal levels that was linear over the first 20 s. The calculated rate constants of release for both the initial phase of K+- and the veratridine-stimulated release were approximately threefold greater in CS than in ME synaptosomes. The major component of the high K+-induced release of [3H]DA from both synaptosome preparations increased as a graded function of [Ca2+]o. However, a smaller component, independent of external Ca2+, existed in both ME and CS synaptosomes. Increasing the [Mg2+] in the external solution resulted in a right shift of both the [K+]o and the [Ca2+]o dose-response curves, consistent with actions of Mg2+ on screening surface membrane charges and blocking voltage-dependent Ca2+ channels. In all studies, steady-state uptake of the [3H]DA was about twofold greater into CS than into ME synaptosomes. Moreover, the fraction of incorporated [3H]DA released by stimulation from the CS was much greater than that released from ME synaptosomes. These data are consistent with differences between these two types of dopaminergic terminals with respect to packaging and/or distribution of the accumulated neurotransmitter in intraneuronal pools, as well as marked differences in the apparent kinetics of DA release.  相似文献   

17.
Further Characterization of Dopamine Release by Permeabilized PC 12 Cells   总被引:3,自引:2,他引:1  
Rat pheochromocytoma cells (PC12) permeabilized with staphylococcal alpha-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC12 cells. Permeabilization with alpha-toxin or digitonin and stimulation of the cells were done consecutively to wash out endogenous Mg2+-ATP. During permeabilization, ATP was removed effectively from the cytoplasm by both agents but the cells released [3H]dopamine in response to micromolar Ca2+ alone. Replacement by chloride of glutamate, which could sustain mitochondrial ATP production in permeabilized cells, does not significantly alter catecholamine release induced by Ca2+. However, Mg2+ without ATP augments the Ca2+-induced release. The release was unaltered by thiol-, hydroxyl-, or calmodulin-interfering substances. Thus Mg2+-ATP, calmodulin, or proteins containing -SH or -OH groups are not necessary for exocytosis in permeabilized PC12 cells.  相似文献   

18.
In vascular smooth muscle tissues, the cycle of contraction-relaxation is mainly regulated by the cytosolic Ca, and many other factors, such as substances released from endothelial cells and perivascular nerve terminals (mainly sympathetic nerves). In this article, we introduce regional differences in specific features of ionic channels in vascular smooth muscle membranes (mainly on features of Ca, Na and K channels) in relation to mobilization of the cytosolic Ca. In many vascular tissues, neurotransmitters released from sympathetic nerve terminals activate post-junctional receptors, and subsequently modify ion channels (receptor-activated cation channel and voltage-dependent Ca channel), whereas in some tissues, ionic channels are not modified by receptor activations (pharmaco-mechanical coupling). However, activation of receptors, with or without modulation of ionic channels, regulates the cytosolic Ca through synthesis of second messengers. In addition, receptors distributed on prejunctional nerve terminals positively or negatively regulate the release of transmitters. Roles of neurotransmitters (mainly ATP and noradrenaline) are also discussed in relation to the generation of excitatory junction potentials.  相似文献   

19.
Abstract: Changes in sympathetic nerve terminals of the heart after varying periods of exposure of rats to 4°C were investigated. Two indices were used for changes in the number of noradrenaline storage vesicles, i.e., vesicular dopamine β-hydroxylase (DBH) activity and noradrenaline storage capacity. The latter was obtained after uptake of [3H]noradrenaline; endogenous content, uptake of exogenous noradrenaline, and degree of saturation of the vesicles were calculated using the specific activity of the [3H]noradrenaline. As a measure of tyrosine hydroxylase activity, whole ventricular noradrenaline, dopamine, and dihydroxyphenylacetic acid content were used. After 4 h of cold exposure there was an increase in vesicular endogenous noradrenaline content, uptake, storage capacity, and DBH activity as well as a large increase in whole ventricular dopamine. After 6 h in the cold, vesicular endogenous noradrenaline content, storage capacity, and DBH activity were decreased. The results suggest that during cold exposure there is an initial increase followed by a decrease in the number of functional vesicles in the nerve terminal, which could explain the fluctuations in the rate of noradrenaline release.  相似文献   

20.
Exogenous ATP induces inward currents and causes the release of arginine-vasopressin (AVP) from isolated neurohypophysial terminals (NHT); both effects are inhibited by the P2X2 and P2X3 antagonists, suramin and PPADS. Here we examined the role of endogenous ATP in the neurohypophysis. Stimulation of NHT caused the release of both AVP and ATP. ATP induced a potentiation in the stimulated release of AVP, but not of oxytocin (OT), which was blocked by the presence of suramin. In loose-patch clamp recordings, from intact neurohypophyses, suramin or PPADS produces an inhibition of action potential currents in a static bath, that can be mimicked by a hyperpolarization of the resting membrane potential (RMP). Correspondingly, in a static versus perfused bath there is a depolarization of the RMP of NHT, which was reduced by either suramin or PPADS. We measured an accumulation of ATP (3.7 +/- 0.7 microM) released from NHT in a static bath. Applications of either suramin or PPADS to a static bath decreased burst-stimulated capacitance increases in NHT. Finally, only vasopressin release from electrically stimulated intact neurohypophyses was reduced in the presence of Suramin or PPADS. These data suggest that there was sufficient accumulation of ATP released from the neurohypophysis during stimulations to depolarize its nerve terminals. This would occur via the opening of P2X2 and P2X3 receptors, inducing an influx of Ca2+. The subsequent elevation in [Ca2+](i) would further increase the stimulated release of only vasopressin from NHT terminals. Such purinergic feedback mechanisms could be physiologically important at most CNS synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号