首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The unincubated chick blastoderm, which consists of a complete upper epithelial layer of one cell thickness (epiblast) and an incomplete lower layer (hypoblast), was examined with the electron microscope in order to define the types of cell contact present. The terminal contacts between the cells of the epiblast invariably involved several focal tight junctions, but only occasionally involved tight junctions. Desmosomes were not observed in these areas, but were encountered in various phases of development in the deeper contact regions between epiblast cells. This deeper region also showed sporadic focal tight junctions and frequent micropapillae. These micropapillae were also common on the surfaces of hypoblast cells. Intercellular spaces between epiblast and hypoblast cells and within the hypoblast were often wide, narrowing to occasional focal tight junctions. Tight junctions and desmosomes were not observed in association with hypoblast cells. Gap junctions were not observed in any region of the embryo.These observations are discussed in relation to the morphogenetic movements occurring in the forming hypoblast and also the influence of this layer on the subsequent development of the embryo. Comparisons are drawn between the contact morphology in the unincubated blastoderm and that in later stages of development.Supported by the Medical Research Council of Canada.  相似文献   

3.
The role of perchloric acid-soluble protein (PSP) was investigated in chick embryos. Fluorescently labeled anti-chick liver (CL)-PSP IgG was injected into the yolk sac in ovo at embryonic day 3, and became localized in neuroepithelial cells. Within 12 h, morphological changes were observed in 37.5% of anti-CL-PSP IgG-injected embryos, and the neuroepithelial cells formed a wavy line. No significant changes were observed in embryos injected with non-immune IgG or PBS. Increased expression of PCNA and decreased expression of neuronal class III beta-tubulin were observed in the spinal cord after anti-CL-PSP IgG injection. These results suggest that PSP controls the proliferation and differentiation of neuroepithelial cells in chick embryos.  相似文献   

4.
Summary Nuclear sap proteins from liver of 12-, 15-, 19-day-old embryos and 1-day-old chicks were resolved by one-and two-dimensional gel electrophoresis. Although the protein patterns from various stages of development have remarkable similarities, some qualitative and quantitative differences were found among these patterns. The most pronounced changes were detected in protein with molecular weight of 100 K which was very abundant in nuclei of 12-day-old embryos and disappeared in nuclei of older embryos and in protein with molecular weight of 40 K which rapidly diminished after hatching.  相似文献   

5.
Morphology and behaviour of neural crest cells of chick embryo in vitro   总被引:2,自引:0,他引:2  
Summary Neural primordia of chick embryos were cultured for three days and the behaviour of migrating neural crest cells studied. Somite cells were used as a comparison. Crest cells were actively multipolar with narrow projections which extended and retracted rapidly, contrasting to the gradual extension of somite-cell lamellae. On losing cell contact, somite cells were also more directionally persistent. The rate of displacement of isolated crest cells was particularly low when calculated over a long time base. Both crest and somite cells were monolayered; contact paralysis occurred in somite cell collisions but was not ascertained for crest cells. However, crest cells in a population were far more directionally persistent than isolated cells. Contact duration between crest cells increased with time and they formed an open network. Eventually, retraction clumping occurred, initially and chiefly at the periphery of the crest outgrowth. Crest cells did not invade cultured embryonic mesenchymal or epithelial populations but endoderm underlapped them. No effects were observed on crest cells prior to direct contact. Substrate previously occupied by endoderm or ectoderm caused crest cells to flatten while substrate previously occupied by the neural tube caused them to round up and clump prematurely.  相似文献   

6.
Summary The migration of neural crest and sclerotome cells and the extension of ventral root axons in chick embryos at stages 16–20 were studied by light microscopy as well as scanning and transmission electron microscopy at the leg bud level of fixed specimens. Extensive cellular movements take place in association with an extracellular matrix consisting of microfibrils. The neural crest and sclerotome cells migrate into the large matrix-filled extracellular space surrounding the neural tube and notochord, apparently using microfibril bundles as substratum. The cells exhibit pseudopodia which are closely associated with the matrix fibrils. The fibrils around the notochord show a spatial arrangement indicating that the sclerotome cells are contact-guided to their subsequent positions. Mutual cell contacts, including those established by cell processes, frequently show cytoplasmic electron dense plaques at adjacent membranes. These small plaque contacts might be correlated to contact inhibition of locomotion between the cells and participate in the guidance of cells. The growth cones of extending axons exhibit filopodia contacting both surrounding mesenchyme cells and extracellular fibrils. The orientation of the axons might thus be affected by contacts with cell surfaces as well as with extracellular material.Technical assistance was given by Mrs. Kerstin Ahlfors, Mrs. Charlotte Fällström, Mrs. Annika Kylberg and Mrs. Stine SöderströmSupported by grants from The Swedish Natural Science Research Council  相似文献   

7.
Summary In early chick blastoderm at stage XIII, the interaction of the hypoblast with the epiblast triggers on the epiblast the first extensive cellular migrations, which result in formation of the primitive streak, the source of the axial mesoderm. During this period, extracellular material (ECM) is secreted and assembled into an organized network in the extracellular spaces and is implicated in regulating the behaviour of the cells that contact it. The first cellular migrations and inductions are inhibited when early chick blastoderm is treated with the glycosylation-perturbing ionophore monensin. The difference in amount and in organization of ECM between monensin-treated embryos and control embryos is striking. Even blastoderms at stage X, which are essentially free of ECM, show extensive ECM after monensin treatment. Monensin produces a substantial change in the polypeptide pattern with the induction or marked accentuation of multiple charged species (isoforms) of polypeptides different from those present in the control embryos. The interference of monensin with the migration and induction mechanisms is permanent in embryos before the primitive streak (PS) stage, and it seems that the respective signals or the sensitivity of the epiblast/hypoblast cells to them must be very stage specific. Monensin-treated embryos probably secrete abnormal ECM that does not provide the proper conditions for the hypoblast to interact with the epiblast cells.  相似文献   

8.
Summary The development of the egg envelope and its incorporation into the larval cuticle of the polychaete Phragmatopoma lapidosa, was studied by correlative scanning and transmission electron microscopy. The mature egg possesses an envelope composed of five zones including an outer granular zone formed by the tips of the egg microvilli. The formation of the granules is described and their functions are discussed. The entire egg envelope is retained as the larval cuticle up to the 16 h trochophore stage. From this stage to about the 60 h larval stage, the envelope is gradually lost and replaced by a cuticle consisting of branching microvilli. The cuticle of the 20 day larva is composed of highly branching microvilli penetrating a homogeneous electron opaque cuticle. The possible functions of the cuticle among the Annelida are discussed.We thank Mrs. P.A. Linley, Mr. R. Koss, and Mr. G.D. Braybrook for technical assistance. Special appreciation is extended to Dr. Edward Ruppert for his contributions to many stimulating discussions during the course of this investigation. This study was partially supported by a National Research Council of Canada grant to F.S. ChiaContribution No. 76, Harbor Branch Foundation, Inc.  相似文献   

9.
10.
Summary The ultrastructural changes in the wing bud afterapical ectodermal ridge (A.E.R.) removal was studied to re-examine the issue of distal mesenchymal cell death. The A.E.R. of the right wing bud was removed microsurgically from chick embryos of stages 18 to 22 (HH 1951). The wing buds were examined at three hour intervals up to twelve hours after the operation with light, transmission and scanning electron microscopy. The main findings were:(1) Immediate and temporary shrinkage of the mesenchymal extracellular space 100 to 150 m and chromatin condensation in the cells 50 to 75 m from the wound. (2) Death of ectodermal and mesenchymal cells in the immediate vicinity of the wound. (3) Formation of a single squamous-like layer of mesenchymal cells to cover the wound. (4) Occasional evidence of cell death in the distal mesenchyme at later times after the operation.The pattern of cell death observed suggests only a traumatic etiology, and gives little evidence for the postulated developmental significance of cell death following A.E.R. removal.  相似文献   

11.
12.
In vertebrates, the endoderm is established during gastrulation and gradually becomes regionalized into domains destined for different organs. Here, we present precise fate maps of the gastrulation stage chick endoderm, using a method designed to label cells specifically in the lower layer. We show that the first population of endodermal cells to enter the lower layer contributes only to the midgut and hindgut; the next cells to ingress contribute to the dorsal foregut and followed finally by the presumptive ventral foregut endoderm. Grafting experiments show that some migrating endodermal cells, including the presumptive ventral foregut, ingress from Hensen's node, not directly into the lower layer but rather after migrating some distance within the middle layer. Cell transplantation reveals that cells in the middle layer are already committed to mesoderm or endoderm, whereas cells in the primitive streak are plastic. Based on these results, we present a revised fate map of the locations and movements of prospective definitive endoderm cells during gastrulation.  相似文献   

13.
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.  相似文献   

14.
Summary Chick embryos at developmental stages up to primitive streak formation were fixed in a mixture of tannic acid and glutaraldehyde. A basal lamina was present in the unincubated embryo and consisted of a lucent lamina interna and a lamina densa. At the primitive streak stage the lamina densa showed a periodicity of stained elements. Densely stained materials were present on the cell surfaces lining the cavity between the epiblast and endoblast, and on the mesoderm cells within this cavity. Considerable amounts of extracellular material were observed in the cavity. Hyaluronidase treatment removed the cell surface and extracellular material, indicating that hyaluronic acid is a major component. This enzyme disrupted the basal lamina, leaving a fibrillar remnant with no periodic structure. It is therefore suggested that the dense periodicities consist of glycosaminoglycan built on an enzyme-resistant framework which is probably collagen. Enzyme-resistant fibrils, presumably collagen precursors, are present elsewhere within the tissue spaces.  相似文献   

15.
Although Islet-1 expression in the pituitary gland of early mouse embryo has been previously described, there are no reports concerning the correlation of Islet-1 expression with lineage restrictions in cell types at the later stages of pituitary development. The role of Islet-1 in chickens is also unknown. The purpose of this study was to follow, by using immunohistochemistry, the ontogeny of pituitary Islet-1 and the various cell types that contain Islet-1 throughout chick embryo development. A few Islet-1-immunopositive (Islet-1+) cells were first detected in the pituitary primordium in two out of six embryos at embryonic day 5.5 (E5.5), most of the Islet-1+ cells being ventrally located. As development progressed, many more Islet-1+ cells were observed throughout the pars distalis. The relative percentage of Islet-1+ cells amongst the total Rathke’s pouch cells was 4.4% at E6.5. This increased significantly, reaching 11.1% by E10.5, followed by no significant change until hatching. Dual immunohistochemistry showed that adrenocorticotrophs, somatotrophs and lactotrophs did not express Islet-1. The cellular types expressing Islet-1 included luteinizing-hormone-positive (LH+) gonadotrophs and thyroid-stimulating-hormone-positive (TSH+) thyrotrophs. The cells co-expressing LH and Islet-1 were initially detected at E6.5, the proportion of LH+ cells possessing Islet-1 being about 4%; this increased to 63% at E14.5, followed by no significant changes until hatching. TSH and Islet-1 co-localized cells were first observed at E10.5, with about 37% TSH+ cell expressing Islet-1; this increased to about 50% by E16.5, after which there was no evident change until hatching. These results suggest that Islet-1 is involved in determining the cell lineages, proliferation, differentiation and maintenance of hormone-secreting functions of pituitary gonadotrophs and thyrotrophs of chick embryo. J. Liu and Y. He contributed equally to this article. This work was supported by grants from Beijing Natural Science Foundation (6042013) and the Natural Science Foundation of China (30471264, 30325034).  相似文献   

16.
Summary The mode of formation of the myoneural and myotendinous junctions was investigated in the thigh muscles of the chick embryo. Myotendinous junctions first appeared on day 11 of incubation, whereas myoneural junctions developed on day 12. Intracellular AChE activity in the muscles increased by the 12th day of incubation, and decreased rapidly after the formation of the myoneural junctions. Light and electron microscopically, AChE activity was demonstrated in the nuclear envelope, sarcoplasmic reticulum, Golgi complex, and in large granules which appeared to be derived from the Golgi complex. Large granules showing an intense AChE activity accumulated in the sarcoplasm at the poles of the muscle fiber before the formation of myotendinous junctions. After the translocation of this intracellular enzyme onto the sarcolemma, most likely the result of an exocytosis of the granules, the myotendinous junctions were formed. The AChE-rich granules present in the middle of myotubes developed into spindle- or comma-shaped cisternae which were located in the sarcoplasm just below the presumptive motor endplates. The present results suggest that the transport of AChE-rich granules to the sarcolemma is the first step in the formation of myoneural and myotendinous junctions.This work was carried out under grant 38848 from the Ministry of Education of Japan  相似文献   

17.
Synaptogenesis in the chick embryo spinal cord   总被引:5,自引:0,他引:5  
  相似文献   

18.
Summary The localization of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis and thus in cell growth, was determined in the 4.5-day-old chick embryo, using two independent methods of analysis. ODC protein was identified by indirect immunofluorescence with a monospecific ODC antibody, and catalytically active ODC was identified by autoradiography with -(5-3H) difluoromethylornithine. Both methods revealed a basically similar distribution of ODC within the embryo. Among the organs, the brain exhibited the highest ODC levels. ODC levels were also high in spinal cord, mesonephric tubules and heart. Similar levels, but confined to limited areas, were found in liver tissue, head mesenchyme, and the oral and pharyngeal regions. Organs that exhibited high ODC levels are all engaged in rapid growth, as well as in extensive tissue remodeling and differentiation.  相似文献   

19.
Retinae of chick embryos and chicks one to six weeks after hatching were examined in ultrathin sections and in freeze-etch specimens. The development of the synaptic contacts between receptor cells and bipolar cells starts at the end of the second week of incubation with the enclosure of the dendritic prolongations, invaginating receptor terminals accompanied by the appearance of electron dense material at the synaptic contact sites. Subsequently receptor terminals become filled with synaptic vesicles which surround the synaptic lamellae that appear on the 16th day of incubation. The application of the freeze-fracture technique demonstrates that the differentiation of the synaptic membranes continues into the first week post hatching. E-fracture faces of the presynaptic membranes are characterized by crater-like structures, called synaptopores. Their number is rather small during incubation and increases after hatching. In the P-fracture faces of the dendrites, which are enclosed by the receptor terminals, small particle aggregations appear on the 16th day of incubation. These small particle clusters increase by the apposition of further particles which become arranged in lines and bring out a lattice-like aspect. This arrangement of particles in the inner part of the cell membrane is the morphological expression of the maturation process. The significance of these aggregations as a postsynaptic receptor for neurotransmitters in excitatory cells is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号