首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considerable debate has focused on whether sampling of molecular dynamics trajectories restrained by crystallographic data can be used to develop realistic ensemble models for proteins in their natural, solution state. For the SARS-CoV-2 main protease, Mpro, we evaluated agreement between solution residual dipolar couplings (RDCs) and various recently reported multi-conformer and dynamic-ensemble crystallographic models. Although Phenix-derived ensemble models showed only small improvements in crystallographic Rfree, substantially improved RDC agreement over fits to a conventionally refined 1.2-Å X-ray structure was observed, in particular for residues with above average disorder in the ensemble. For a set of six lower resolution (1.55–2.19 Å) Mpro X-ray ensembles, obtained at temperatures ranging from 100 to 310 K, no significant improvement over conventional two-conformer representations was found. At the residue level, large differences in motions were observed among these ensembles, suggesting high uncertainties in the X-ray derived dynamics. Indeed, combining the six ensembles from the temperature series with the two 1.2-Å X-ray ensembles into a single 381-member “super ensemble” averaged these uncertainties and substantially improved agreement with RDCs. However, all ensembles showed excursions that were too large for the most dynamic fraction of residues. Our results suggest that further improvements to X-ray ensemble refinement are feasible, and that RDCs provide a sensitive benchmark in such endeavors. Remarkably, a weighted ensemble of 350 PDB Mpro X-ray structures provided slightly better cross-validated agreement with RDCs than any individual ensemble refinement, implying that differences in lattice confinement also limit the fit of RDCs to X-ray coordinates.  相似文献   

2.
The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA4 and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRD d,X -HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished.  相似文献   

3.
4.
A strategy for acquiring structural information from sparsely isotopically labeled large proteins is illustrated with an application to the E. coli heat-shock protein, HtpG (high temperature protein G), a 145 kDa dimer. It uses 13C-alanine methyl labeling in a perdeuterated background to take advantage of the sensitivity and resolution of Methyl-TROSY spectra, as well as the backbone-centered structural information from 1H–13C residual dipolar couplings (RDCs) of alanine methyl groups. In all, 40 of the 47 expected crosspeaks were resolved and 36 gave RDC data. Assignments of crosspeaks were partially achieved by transferring assignments from those made on individual domains using triple resonance methods. However, these were incomplete and in many cases the transfer was ambiguous. A genetic algorithm search for consistency between predictions based on domain structures and measurements for chemical shifts and RDCs allowed 60% of the 40 resolved crosspeaks to be assigned with confidence. Chemical shift changes of these crosspeaks on adding an ATP analog to the apo-protein are shown to be consistent with structural changes expected on comparing previous crystal structures for apo- and complex- structures. RDCs collected on the assigned alanine methyl peaks are used to generate a new solution model for the apo-protein structure.  相似文献   

5.
We have solved the solution structure of the N-terminal region of the fission yeast centromere protein, Abp1, bound to a 21-base pair DNA fragment bearing its recognition site (Mw = 30 kDa). Although the two DNA-binding domains in the Abp1 protein were defined well by a conventional NOE-based NMR methodology, the overall structure of the Abp1 protein was poorly defined, due to the lack of interdomain distance restraints. Therefore, we additionally used residual dipolar couplings measured in a weakly aligned state, and rotational diffusion anisotropies. Neither the NH residual dipolar couplings nor the backbone 15N T 1/T 2 data were sufficient to determine the overall structure of the Abp1 protein, due to spectral overlap. We used a combination of these two orientational restraints (residual dipolar coupling and rotational diffusion anisotropy), which significantly improved the convergence of the overall structures. The range of the observed T 1/T 2 ratios was wider (20–50 for the secondary structure regions of Abp1) than the previously reported data for several globular proteins, indicating that the overall shape of the Abp1DNA complex is ellipsoid. This extended form would facilitate the recognition of the two separate sites in the relatively long DNA sequence by the DNA-binding domains of Apb1.  相似文献   

6.
Ribonucleic acid structure determination by NMR spectroscopy relies primarily on local structural restraints provided by 1H 1H NOEs and J-couplings. When employed loosely, these restraints are broadly compatible with A- and B-like helical geometries and give rise to calculated structures that are highly sensitive to the force fields employed during refinement. A survey of recently reported NMR structures reveals significant variations in helical parameters, particularly the major groove width. Although helical parameters observed in high-resolution X-ray crystal structures of isolated A-form RNA helices are sensitive to crystal packing effects, variations among the published X-ray structures are significantly smaller than those observed in NMR structures. Here we show that restraints derived from aromatic 1H 13C residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) can overcome NMR restraint and force field deficiencies and afford structures with helical properties similar to those observed in high-resolution X-ray structures.  相似文献   

7.
Backbone 15N relaxation parameters and 15N–1HN residual dipolar couplings (RDCs) have been measured for a variant of human α-lactalbumin (α-LA) in 4, 6, 8 and 10 M urea. In the α-LA variant, the eight cysteine residues in the protein have been replaced by alanines (all-Ala α-LA). This protein is a partially folded molten globule at pH 2 and has been shown previously to unfold in a stepwise non-cooperative manner on the addition of urea. 15N R2 values in some regions of all-Ala α-LA show significant exchange broadening which is reduced as the urea concentration is increased. Experimental RDC data are compared with RDCs predicted from a statistical coil model and with bulkiness, average area buried upon folding and hydrophobicity profiles in order to identify regions of non-random structure. Residues in the regions corresponding to the B, D and C-terminal 310 helices in native α-LA show R2 values and RDC data consistent with some non-random structural propensities even at high urea concentrations. Indeed, for residues 101–106 the residual structure persists in 10 M urea and the RDC data suggest that this might include the formation of a turn-like structure. The data presented here allow a detailed characterization of the non-cooperative unfolding of all-Ala α-LA at higher concentrations of denaturant and complement previous studies which focused on structural features of the molten globule which is populated at lower concentrations of denaturant.  相似文献   

8.
Homonuclear 1H residual dipolar couplings (RDCs) truncate the evolution of transverse 1H magnetization of weakly aligned molecules in high-resolution NMR experiments. This leads to losses in sensitivity or resolution in experiments that require extended 1H evolution times. Lee–Goldburg decoupling schemes have been shown to remove the effects of homonuclear dipolar couplings, while preserving chemical shift evolution in a number of solid-state NMR applications. Here, it is shown that the Lee-Goldburg sequence can be effectively incorporated into INEPT- or HMQC-type transfer schemes in liquid state weak alignment experiments in order to increase the efficiency of the magnetization transfer. The method is applied to the sensitive detection of 1HN13C long-range RDCs in a three-dimensional HCN experiment. As compared to a conventional HCN experiment, an average sensitivity increase by a factor of 2.4 is obtained for a sample of weakly aligned protein G. This makes it possible to detect 170 long-range 1HN13C RDCs for distances up to 4.9 Å  相似文献   

9.
A procedure is presented for refinement of a homology model of E. coli tRNAVal, originally based on the X-ray structure of yeast tRNAPhe, using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm is described for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N–HN RDCs measured with Pf1 phage alignment, and 20 imino N–HN RDCs obtained from magnetic field dependent alignment of tRNAVal. The refinement strategy aims to largely retain the local geometry of the 58% identical tRNAPhe by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Q free = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNAPhe, in agreement with previous NMR-based tRNAVal models. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The prediction of the three‐dimensional (3D) structure of proteins from the amino acid sequence made a stunning breakthrough reaching atomic accuracy. Using the neural network‐based method AlphaFold2, 3D structures of almost the entire human proteome have been predicted and made available (https://www.alphafold.ebi.ac.uk). To gain insight into how well AlphaFold2 structures represent the conformation of proteins in solution, I here compare the AlphaFold2 structures of selected small proteins with their 3D structures that were determined by nuclear magnetic resonance (NMR) spectroscopy. Proteins were selected for which the 3D solution structures were determined on the basis of a very large number of distance restraints and residual dipolar couplings and are thus some of the best‐resolved solution structures of proteins to date. The quality of the backbone conformation of the AlphaFold2 structures is assessed by fitting a large set of experimental residual dipolar couplings (RDCs). The analysis shows that experimental RDCs fit extremely well to the AlphaFold2 structures predicted for GB3, DinI, and ubiquitin. In the case of GB3, the accuracy of the AlphaFold2 structure even surpasses that of a 1.1 Å crystal structure. Fitting of experimental RDCs furthermore allows identification of AlphaFold2 structures that are best representative of the protein''s conformation in solution as seen for the EF hands of the N‐terminal domain of Ca2+‐ligated calmodulin. Taken together, the analysis shows that structures predicted by AlphaFold2 can be highly representative of the solution conformation of proteins. The combination of AlphaFold2 structures with RDCs promises to be a powerful approach to study structural changes in proteins.  相似文献   

11.
A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the 2H NMR water signal and by the measurement of 1H-15N residual dipolar couplings (RDC) in the archeal translation elongation factor 1. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample.  相似文献   

12.
NMR solution structures of nucleic acids are generally less well defined than similar-sized proteins. Most NMR structures of nucleic acids are defined only by short-range interactions, such as intrabase-pair or sequential nuclear Overhauser effects (NOEs), and J-coupling constants, and there are no long-range structural data on the tertiary structure. Residual dipolar couplings represent an extremely valuable source of distance and angle information for macromolecules but they average to zero in isotropic solutions. With the recent advent of general methods for partial alignment of macromolecules in solution, residual dipolar couplings are rapidly becoming indispensable constraints for solution NMR structural studies. These residual dipolar couplings give long-range global structural information and thus complement the strictly local structural data obtained from standard NOE and torsion angle constraints. Such global structural data are especially important in nucleic acids due to the more elongated, less-globular structure of many DNAs and RNAs. Here we review recent progress in application of residual dipolar couplings to structural studies of nucleic acids. We also present results showing how refinement procedures affect the final solution structures of nucleic acids.Copyright 2001 John Wiley & Sons, Inc.  相似文献   

13.
Several NMR works have shown that long-range information provided by residual dipolar couplings (RDCs) significantly improve the global structure definition of RNAs and DNAs. Most of these are based on the use of a large set of RDCs, the collect of which requires samples labeled with 13C, 15N, and sometimes, 2H. Here, we carried out torsion-angle dynamics simulations on a non-self complementary DNA fragment of 17 base-pairs, d(GGAAAATATCTAGCAGT).(ACTGCTAGAGATTTTCC). This reproduces the U5 LTR distal end of the HIV-1 cDNA that contains the enzyme integrase binding site. Simulations aimed at evaluating the impact of RDCs on the structure definition of long oligonucleotides, were performed in incorporating (i) nOe-distances at both < 4.5 Å and < 5 Å; (ii) a small set of 13C-1H RDCs, easily detectable at the natural abundance, and (iii) a larger set of RDCs only accessible through the 13C labeling of DNAs. Agreement between a target structure and a simulated structure was measured in terms of precision and accuracy. Results allowed to define conditions in which accurate DNA structures can be determined. We confirmed the strong impact of RDCs on the structure determination, and, above all, we found that a small set of RDC constraints (ca. 50) detectable at the natural abundance is sufficient to accurately derive the global and local DNA duplex structures when used in conjunction with nOe-distances < 5 Å.  相似文献   

14.
Residual dipolar couplings (RDCs) and pseudocontact shifts are experimentally accessible properties in nuclear magnetic resonance that are related to structural parameters and to the magnetic susceptibility anisotropy. We have determined RDCs due to field-induced orientation of oxidized-K79A and reduced cytochrome c at pH 7.0 and oxidized-K79A cytochrome c at pH 11.1 through measurements of amide (15)N-(1)H (1)J couplings at 800 and 500 MHz. The pH 7.0 RDCs for Fe(III)- and Fe(II)-cytochrome c together with available nuclear Overhauser effects were used to recalculate solution structures that were consistent with both sets of constraints. Molecular magnetic susceptibility anisotropy values were calculated for both redox states of the protein. By subtracting the residual dipolar couplings (RDCs) of the reduced form from those of the oxidized form measured at the same magnetic field (800 MHz), we found the RDC contribution of the paramagnetic metal ion in the oxidized protein. The magnetic susceptibility anisotropy, which was calculated from the structure, was found to be the same as that of the paramagnetic metal ion obtained independently from pseudocontact shifts, thereby indicating that the elements of secondary structure either are rigid or display the same mobility in both oxidation states. The residual dipolar coupling values of the alkaline-K79A form are small with respect to those of oxidized native cytochrome, whereas the pseudocontact shifts are essentially of the same magnitude, indicating local mobility. Importantly, this is the first time that mobility has been found through comparison of RDCs with pseudocontact shifts.  相似文献   

15.
Encodable lanthanide binding tags (LBTs) have become an attractive tool in modern structural biology as they can be expressed as fusion proteins of targets of choice. Previously, we have demonstrated the feasibility of inserting encodable LBTs into loop positions of interleukin-1β (Barthelmes et al. in J Am Chem Soc 133:808–819, 2011). Here, we investigate the differences in fast dynamics of selected loop-LBT interleukin-1β constructs by measuring 15N nuclear spin relaxation experiments. We show that the loop-LBT does not significantly alter the dynamic motions of the host protein in the sub-τc-timescale and that the loop-LBT adopts a rigid conformation with significantly reduced dynamics compared to the terminally attached encodable LBT leading to increased paramagnetic alignment strength. We further analyze residual dipolar couplings (RDCs) obtained by loop-LBTs and additional liquid crystalline media to assess the applicability of the loop-LBT approach for RDC-based methods to determine structure and dynamics of proteins, including supra-τc dynamics. Using orthogonalized linear combinations (OLCs) of RDCs and Saupe matrices, we show that the combined use of encodable LBTs and external alignment media yields up to five linear independent alignments.  相似文献   

16.
Experimental residual dipolar couplings (RDCs) in combination with structural models have the potential for accelerating the protein backbone resonance assignment process because RDCs can be measured accurately and interpreted quantitatively. However, this application has been limited due to the need for very high-resolution structural templates. Here, we introduce a new approach to resonance assignment based on optimal agreement between the experimental and calculated RDCs from a structural template that contains all assignable residues. To overcome the inherent computational complexity of such a global search, we have adopted an efficient two-stage search algorithm and included connectivity data from conventional assignment experiments. In the first stage, a list of strings of resonances (CA-links) is generated via exhaustive searches for short segments of sequentially connected residues in a protein (local templates), and then ranked by the agreement of the experimental 13Cα chemical shifts and 15N-1H RDCs to the predicted values for each local template. In the second stage, the top CA-links for different local templates in stage I are combinatorially connected to produce CA-links for all assignable residues. The resulting CA-links are ranked for resonance assignment according to their measured RDCs and predicted values from a tertiary structure. Since the final RDC ranking of CA-links includes all assignable residues and the assignment is derived from a “global minimum”, our approach is far less reliant on the quality of experimental data and structural templates. The present approach is validated with the assignments of several proteins, including a 42 kDa maltose binding protein (MBP) using RDCs and structural templates of varying quality. Since backbone resonance assignment is an essential first step for most of biomolecular NMR applications and is often a bottleneck for large systems, we expect that this new approach will improve the efficiency of the assignment process for small and medium size proteins and will extend the size limits assignable by current methods for proteins with structural models.  相似文献   

17.
Imino 1H–15N residual dipolar couplings (RDCs) provide additional structural information that complements standard 1H–1H NOEs leading to improvements in both the local and global structure of RNAs. Here, we report measurement of imino 1H–1H RDCs for the Iron Responsive Element (IRE) RNA and native E. coli tRNAVal using a BEST-Jcomp-HMQC2 experiment. 1H–1H RDCs are observed between the imino protons in G–U wobble base pairs and between imino protons on neighboring base pairs in both RNAs. These imino 1H–1H RDCs complement standard 1H–15N RDCs because the 1H–1H vectors generally point along the helical axis, roughly perpendicular to 1H–15N RDCs. The use of longitudinal relaxation enhancement increased the signal-to-noise of the spectra by ~3.5-fold over the standard experiment. The ability to measure imino 1H–1H RDCs offers a new restraint, which can be used in NMR domain orientation and structural studies of RNAs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Residual dipolar couplings (RDCs) were used as restraints in fully solvated molecular dynamics simulations of reduced substrate- and carbonmonoxy-bound cytochrome P450(cam) (CYP101A1), a 414-residue soluble monomeric heme-containing camphor monooxygenase from the soil bacterium Pseudomonas putida. The (1)D(NH) residual dipolar couplings used as restraints were measured in two independent alignment media. A soft annealing protocol was used to heat the starting structures while incorporating the RDC restraints. After production dynamics, structures with the lowest total violation energies for RDC restraints were extracted to identify ensembles of conformers accessible to the enzyme in solution. The simulations result in substrate orientations different from that seen in crystallographic structures and a more open and accessible enzyme active site and largely support previously reported differences between the open and closed states of CYP101A1.  相似文献   

19.
Residual dipolar couplings can provide powerful restraints for determination and refinement of the solution structure of macromolecules. The application of these couplings in nucleic acid structure elucidation can have an especially dramatic impact, since they provide long-range restraints, typically absent in NOE and J-coupling measurements. Here we describe sensitive X-filtered-E.COSY-type methods designed to measure both the sign and magnitude of long-range 1H-19F dipolar couplings in selectively fluorine labeled RNA oligonucleotides oriented in solution by a liquid crystalline medium. The techniques for measuring 1H-19F dipolar couplings are demonstrated on a 21-mer RNA hairpin, which has been specifically labeled with fluorine at the 2-hydroxyl position of three ribose sugars. Experimentally measured 1H-19F dipolar couplings for the 2-deoxy-2-fluoro-sugars located in the helical region of the RNA hairpin were found to be in excellent agreement with values predicted using canonical A-form helical geometry, demonstrating that these couplings can provide accurate restraints for the refinement of RNA structures determined by NMR.  相似文献   

20.
Residual dipolar couplings (RDCs) complement standard NOE distance and J-coupling torsion angle data to improve the local and global structure of biomolecules in solution. One powerful application of RDCs is for domain orientation studies, which are especially valuable for structural studies of nucleic acids, where the local structure of a double helix is readily modeled and the orientations of the helical domains can then be determined from RDC data. However, RDCs obtained from only one alignment media generally result in degenerate solutions for the orientation of multiple domains. In protein systems, different alignment media are typically used to eliminate this orientational degeneracy, where the combination of RDCs from two (or more) independent alignment tensors can be used to overcome this degeneracy. It is demonstrated here for native E. coli tRNAVal that many of the commonly used liquid crystalline alignment media result in very similar alignment tensors, which do not eliminate the 4-fold degeneracy for orienting the two helical domains in tRNA. The intrinsic magnetic susceptibility anisotropy (MSA) of the nucleobases in tRNAVal was also used to obtain RDCs for magnetic alignment at 800 and 900 MHz. While these RDCs yield a different alignment tensor, the specific orientation of this tensor combined with the high rhombicity for the tensors in the liquid crystalline media only eliminates two of the four degenerate orientations for tRNAVal. Simulations are used to show that, in optimal cases, the combination of RDCs obtained from liquid crystalline medium and MSA-induced alignment can be used to obtain a unique orientation for the two helical domains in tRNAVal. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号