首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of steady and unsteady oscillatory static fluid pressures acting on the internal wall of a collapsible tube is essential for investigation of the complicated behavior observed when a flow is conveyed inside a tube. To examine the validity of two one-dimensional nonsteady theoretical flow models, this paper presents basic experimental observations of flow separation and reattachment and measured data on the static pressure distributions of the flow in a quasi-two-dimensional channel with a throat, together with information on the corresponding shape of the wall deflection and motion. For combinations of moderate Reynolds numbers and angles of the divergent segment of the channel, a smooth flow is separated from the wall downstream of the minimum cross section and reattached to the wall farther downstream. The measured data are compared with numerical results calculated by the two flow models.  相似文献   

2.
Most of the elastic tubes found in the mammalian body will collapse from a distended circular cross section and when collapsed may undergo flow-induced oscillations. A mathematical model describing fluid flow in a collapsible tube is analysed using the software package AUTO-86. AUTO-86 is used for continuation and bifurcation problems in systems of non-linear ordinary differential equations. The model is a third-order lumped-parameter type and is based on the classical “Starling resistor”; it describes the unsteady flow behaviour and, in particular, the experimentally observed self-excited oscillations, in a way which is simple enough to give physical understanding, yet still firmly based on fluid mechanical principles. Some of the bifurcation types found in this model bear close resemblance to the types suggested by experimental observations of self-excited oscillations in collapsible tubes; they thus shed some light on the various topological changes which occur in practice, particularly in view of the fact that some of the points found numerically are diffcult to achieve experimentally, while the existence of others can only be inferred indirectly and uncertainly from experiment.  相似文献   

3.
Compliant tubes attain a complex three-dimensional geometry when the external pressure exceeds the internal pressure and the tube is partially collapsed. A new technique for remote measurement of dynamic surfaces was applied to classical experiments with collapsible tubes. This work presents measurements of the three-dimensional structure of the tube as well as pressure and flow measurements during static loading and during steady-state fluid flow. Results are shown for two tubes of the same material and internal diameter but with different wall thicknesses. The measured tube laws compare well with previously published data and suggest the possible existence of a similarity tube law. The steady flow measurements did not compare well with the one-dimensional theoretical predictions.  相似文献   

4.
This paper describes numerical analysis of collapsible tube flow based on the one-dimensional distributed parameter model of Hayashi. In the present model the effect of flow separation at the collapsed part is replaced with simple viscous friction along the tube, so no ad-hoc modeling for flow separation in former studies is required. A stable semi-implicit numerical procedure based on the SIMPLE method is developed for the problem of flow and tube interaction. The numerical result for a characteristic self-excited oscillation agrees qualitatively with the experimental result. Nonlinear stability of the steady state dependent on the amplitude of the disturbance is numerically investigated and the result is compared with the linear stability analysis based on the former lumped parameter model. Finally, initiation of the self-excited oscillation is examined by applying the initial disturbance at the upstream end of the tube. The disturbance propagates in the downstream direction and is amplified to the self-excited oscillation.  相似文献   

5.
We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic material. To solve the fully coupled fluid–structure interaction, we have developed a novel approach based on the Arbitrary Lagrangian–Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this context and show that at the small strain, all three material models give similar results. However, for the large strain, results differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones. Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible arteries and veins.  相似文献   

6.
We studied flutter in collapsible tubes as a possible mechanism for the generation of respiratory wheezes. The pressure-flow relationships and the wall oscillations of thick-walled [wall thickness (h)-to-lumen radius (r) ratio 1:1.7 to 1.3] self-supporting latex and Silastic tubes mounted between rigid pipes were measured. A high-impedance vacuum pump was connected to the downstream end. Upstream and downstream valves were used to control corresponding resistances. We found loud honking sounds and tube wall oscillations that occurred only when the tubes were buckled and flow limiting, i.e., when the flow became constant and independent of downstream driving pressure. The overall range of oscillatory frequencies was 260-750 Hz for airflow, presenting as sharp peaks of power on the frequency spectrum. The oscillatory frequencies (f) were higher at higher fluid velocities (u) and with narrower distance between opposing flattened walls (2b), resulting from increasing downstream suction pressure and the transmural pressure becoming more negative. The effect of u and b on f for a latex tube (h-to-r ratio 1:1.7) were found to be f = 228 + 0.021 (u/b). These relationships were valid throughout the range of oscillations in this tube (283-720 Hz) and with flow rates of 12-64 l/min. The experimental data were compared with predictions of the fluid dynamic flutter theory and the vortex-induced wall vibrations mechanism. We conclude that viscid flutter in soft tubes is the more probable mechanism for the generation of oscillations in the soft tube model and is a possible mechanism for the generation of respiratory wheezes.  相似文献   

7.
Yang XL  Liu Y  Yang JM 《Journal of biomechanics》2007,40(12):2694-2699
A numerical method is developed to solve the fluid-structure interaction in three-dimensional pulmonary arterial bifurcation with collapsible tubes. A self-developed FEM code is used to calculate the nonlinear deformation of the thin-walled structure and a commercial CFD solver, FLUENT, is used to resolve the fluid flow. The large deformation of the structure alters the flow field significantly while the fluid pressure affects the deformation of the structure strongly. In the bifurcation branches, the relatively short tube collapses into wave number N=3 mode. The strong collapse of the branch tube leads to a large contraction of the cross-sectional area and increases the resistance on the fluid flow. The recirculation occurs at both the up- and down-stream of the collapsed tube.  相似文献   

8.
A two-component laser Doppler anemometer was used to determine the velocity of aqueous flow in the region from 0.25 to 2.5 diameters downstream of a collapsible tube while the tube was executing vigorous repetitive flow-induced oscillations. The Reynolds number for the time-averaged flow was 10,750. A simultaneous measurement of the pressure at the downstream end of the tube was used to align all the results in time at sixty locations in each of the two principal planes defined by the axes of collapse of the flexible tube upstream. The raw data of seed-particle velocity were used to create a periodic waveform for each measured velocity component at each location by least-squares fitting of a Fourier series. The results are presented as both velocity vectors and interpolated contours, for each of ten salient instants during the cycle of oscillation. In the plane of the collapse major axis, the dominant feature is the jet which emerges from each of the two tube lobes when it collapses, but transient retrograde flow is observed on both the central and lateral edges of this jet. In the orthogonal, minor-axis plane, the dominant feature is the retrograde flow, which during part of the cycle extends over the whole plane. All these features are essentially confined to the first 1.5 diameters of the rigid pipe downstream of the flexible tube. These data map the temporal and spatial extent of the highly three-dimensional reversing flow just downstream of an oscillating collapsed tube.  相似文献   

9.
A computational model is presented for unsteady flow through a collapsible tube with variable wall stiffness. The one-dimensional flow equations are solved for inlet, outlet and external conditions that vary with time and for a tube with time-dependent, spatially-distributed local properties. In particular, the effects of nonuniformities and local perturbations in stiffness distribution in the tube are studied. By allowing the flow to evolve in time, asymptotically steady flows are calculated. When simulating a quasi-steady reduction in downstream pressure, the model demonstrates critical transitions, the phenomena of wave-speed limitation and the sites of flow limitation. It also exhibits conditions for which viscous flow limitation occurs. Computations of rapid, unsteady changes of the exit pressure illustrate the phenomena occurring at the onset of a cough, and the generation and propagation of elastic jumps.  相似文献   

10.
The flow field less than one diameter downstream of the end of a collapsible tube executing self excited oscillations was examined using a two-component fiber-optic laser-Doppler anemometer. The time-averaged Reynolds number of the flow was 11,000. With the tube oscillating periodically, results obtained during many cycles of oscillation were combined to yield surface plots of the axial component over the cross section at 16 phases of the cycle. By combining measurements obtained with the laser probe in two different orientations, secondary flow vectors over the cross section were likewise constructed for 16 phases. The measurements showed strongly phasic turbulence intensity, with the phase of high intensity coinciding with the time of maximal tube collapse. Reverse flow occurred during much of the cycle, at places in the cross section that agree with our previous observations of laminar and turbulent steady flow through a rigid simulated collapsed tube.  相似文献   

11.
The study of fluid flow through compliant tubes is a fluid-structure type problem, in which a dynamic equilibrium is maintained between the fluid and the tube wall. The analogy between this flow and gas dynamics initiated the use of a number of numerical methods which were originally developed to solve compressible flow in rigid ducts. In this study we investigate the solutions obtained by applying the Lax-Wendroff and MacCormack schemes to one-dimensional incompressible flow through a straight collapsible tube. The time-evolving numerical results were compared with exact steady-state solutions. For boundary conditions which were held fixed after a prescribed rise time, the unsteady numerical solution converges to the exact steady-state solution with very good accuracy. The stability and accuracy of all the methods depend on the amount of viscous pressure loss dictated by wall friction. Flows with undamped oscillations cannot, however, be solved with these techniques.  相似文献   

12.
A one-dimensional inviscid solution for flow through a compliant tube with a stenosis is presented. The model is used to represent an artery with an atherosclerotic plaque and to investigate a range of conditions for which arterial collapse may occur. The coupled equations for flow through collapsible tubes are solved using a Runge-Kutta finite difference scheme. Quantitative results are given for specific physiological parameters including inlet and outlet pressure, flow rate, stenosis size, length and stiffness. The results suggest that high-grade stenotic arteries may exhibit collapse with typical physiological pressures. Critical stenoses may cause choking of flow at the throat followed by a transition to supercritical flow with tube collapse downstream. Greater amounts of stenosis produced a linear reduction of flow rate and a shortening of the collapsed region. Changes in stenosis length created proportional changes in the length of collapse. Increasing the stiffness of the stenosis to a value greater than the nominal tube stiffness caused a greater amount of flow limitation and more negative pressures, compared to a stenosis with constant stiffness. These findings assist in understanding the clinical consequences of flow through atherosclerotic arteries.  相似文献   

13.
A viscous flow through a long two-dimensional channel, one wall of which is formed by a finite-length membrane, experiences flow limitation when the channel is highly collapsed over a narrow region under high external pressure. Simple approximate relations between flow rate and pressure drop are obtained for this configuration by the use of matched asymptotic expansions. Weak inertial effects are also considered.  相似文献   

14.
A mathematical model is presented for the flow of aqueous humor in Schlemm's canal in the eye. The model introduces a canal segment between two collector channels as a rectangular channel with porous upper wall. Two cases have been considered in the model: (I) the inner porous wall of the canal is rigid; (II) the inner wall is collapsible. Analytical solution of the governing equation in case I is straightforward, whereas the nonlinear equation in case II is solved by an iterative procedure. Aqueous fluid pressure and flow profiles in the proposed model are drawn, and the effects of important parameters on these profiles are brought out and discussed. It is concluded that for case I, resistance to aqueous flow is influenced by the filtration constant of the trabecular and endothelial meshwork and that narrowing of the canal reduces outflow. In case II, an increase in intraocular pressure (IOP) or compliance coefficient of the canal inner wall increases the collapse of the canal, which offers increased resistance to flow resulting in the decreased flow whereas increasing filtration constant facilitates aqueous outflow. These theoretical results suggest that increased IOP or decreased rigidity of the inner wall may contribute to the development of increased resistance as observed in some cases of glaucoma and that increasing values of filtration constant may contribute to the facility of outflow increase.  相似文献   

15.
Flow through thin-wall axisymmetric tubes has long been of interest to physiologists. Analysis is complicated by the fact that such tubes will collapse when the transmural pressure (internal minus external pressure) is near zero. Because of the absence of any body of related knowledge in other sciences or engineering, previous workers have directed their efforts towards experimental studies of flow in collapsible tubes. More recently, some attention has been given towards analytical studies. Results of an extensive series of experiments show that the significant system parameter is transmural pressure. The cross-sectional area of the tube depends upon the transmural pressure, and changes in cross-section in turn affect the flow geometry. Based on experimental studies, a lumped parameter system model is proposed for the collapsible tube. The mathematical model is simulated on a hybrid computer. Experimental data were used to define the functional relationship between cross-sectional area and transmural pressure as well as the relation between the energy loss coefficient and cross-sectional area. Computer results confirm the validity of the model for both steady and transient flow conditions.  相似文献   

16.
Taking into account both flow separation and reattachment observed in available experimental results on flows in a quasi-two-dimensional channel, we present a one-dimensional unsteady flow model, which is applicable to a flow in a collapsible tube. The flow model has been derived from the two-dimensional Navier-Stokes equations by introducing the concept of a dividing streamline, which divides a separated flow into a jet and a dead-water zone. We also present a criterion for the determination of a separation point. Numerical results show that the locations of the predicted separation points agree well with the experimental data. The predicted static pressure of the separated flow is almost constant downstream of the separation point and increases quickly just before the reattachment point as observed in the experiment. Finally, using the present flow model and the separation criterion, we examine the oscillatory behavior of an unsteady flow in a symmetric channel whose walls move sinusoidally.  相似文献   

17.
This study attempts to evaluate the effects of deviation of external nose to nasal airflow patterns. Four typical subjects were chosen for model reconstruction based on computed tomography images of undeviated, S-shaped deviated, C-shaped deviated and slanted deviated noses. To study the hypothetical influence of deviation of external nasal wall on nasal airflow (without internal blockage), the collapsed region along the turbinate was artificially reopened in all the three cases with deviated noses. Computational fluid dynamics simulations were carried out in models of undeviated, original deviated and reopened nasal cavities at both flow rates of 167 and 500 ml/s. The shape of the anterior nasal roof was found to be collapsed on one side of the nasal airways in all the deviated noses. High wall shear stress region was found around the collapsed anterior nasal roof. The nasal resistances in cavities with deviated noses were considerably larger than healthy nasal cavity. Patterns of path-line distribution and wall shear stress distribution were similar between original deviated and reopened models. In conclusion, the deviation of an external nose is associated with the collapse of one anterior nasal roof. The crooked external nose induced a larger nasal resistance compared to the undeviated case, while the internal blockage of the airway along the turbinates further increased it.  相似文献   

18.
Filling of a thin-walled, highly compliant tube in a partially collapsed condition is studied. The theory, based on one-dimensional flow, takes account of friction, longitudinal tension, and the highly nonlinear pressure-area law for the tube. Various aspects of filling behavior are revealed by alternative calculations using: (i) the method of characteristics; (ii) numerical integration of the continuity, momentum, and tube-law equations; and (iii) a crude but simple lumped-element capacitance-inertance-resistance model. Varied phenomena appear. At high Reynolds number, these include dispersive wave trains associated with circumferential bending stiffness and longitudinal tension, nonlinear changes of wave form, development of highly asymmetrical wave reflections, and sloshing. At low Reynolds number, the area changes with time in a diffusivelike manner. The experiments exhibited the dispersive phenomena predicted by the theory.  相似文献   

19.
The mass transfer behavior in the recirculation region downstream of an axisymmetric sudden expansion was examined. The Reynolds number, 500, and Schmidt number, 3200, were selected to model the mass transfer of molecules, such as ADP, in the arterial system. In a first step the transient mass transport applying zero diffusive flux at the wall was analyzed using experiments and two computational codes. The two codes were FLUENT, a commercially available finite volume method, and FTSP, a finite element code developed at Graz University of Technology. The comparison of the transient wall concentration values determined by the three methods was excellent and provides a measure of confidence for computational mass transfer calculations in convection dominated, separated flows. In a second step the effect of the flow separation on the stationary mass transport applying a permeability boundary condition at the water-permeable wall was analyzed using the finite element code FTSP. The results show an increase of luminal ADP surface concentration in the upstream and in the downstream tube of the sudden expansion geometry in the range of six and twelve percent of the bulk flow concentration. The effect of flow separation in the downstream tube on the wall concentration is a decrease of about ten percent of the difference between wall concentration and bulk concentration occurring at nearly fully developed flow at the downstream region at a distance of 66 downstream tube diameters from the expansion. The decrease of ADP flux into the wall is in the range of three percent of the flux at the downstream region.  相似文献   

20.
To determine whether self-excited oscillations in a Starling resistor are relevant to physiological situations, a collapsible tube conveying an aqueous flow was externally pressurized along only a central segment of its unsupported length. This was achieved by passing the tube through a shorter and wider collapsible sleeve which was mounted in Starling resistor fashion in a pressure chamber. The tube size and material, and all other experimental parameters, were as used in our previous Starling resistor studies. Both low- and high-frequency self-excited oscillations were observed, but the low-frequency oscillations were sensitive to the sleeve type and length relative to unsupported distance. Pressure-flow characteristics showed multiple oscillatory modes, which differed quantitatively from those observed in comparable Starling resistors. Slow variation of driving pressure gave differing behavior according to whether the pressure was rising or falling, in accord with the hysteresis noted on the characteristics and in the tube law. The results are discussed in terms of the various possible mechanisms of collapsible tube instability, and reasons are presented for the absence of the low-frequency mode under most physiological circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号