首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
L. Solnica-Krezel  A. F. Schier    W. Driever 《Genetics》1994,136(4):1401-1420
We studied the efficiency with which two chemical mutagens, ethyl methanesulfonate (EMS) and N-ethyl-N-nitrosourea (ENU) can induce mutations at different stages of spermatogenesis in zebrafish (Brachydanio rerio). Both EMS and ENU induced mutations at high rates in post-meiotic germ cells, as indicated by the incidence of F(1) progeny mosaic for the albino mutation. For pre-meiotic germ cells, however, only ENU was found to be an effective mutagen, as indicated by the frequencies of non-mosaic mutant progeny at four different pigmentation loci. Several mutagenic regimens that varied in either the number of treatments or the concentration of ENU were studied to achieve an optimal ratio between the mutagenicity and toxicity. For the two most mutagenic regimens: 4 X 1 hr in 3 mM ENU and 6 X 1 hr in 3 mM ENU, the minimum estimate of frequencies of independent mutations per locus per gamete was 0.9-1.3 X 10(-3). We demonstrate that embryonic lethal mutations induced with ENU were transmitted to offspring and that they could be recovered in an F(2) screen. An average frequency of specific-locus mutations of 1.1 X 10(-3) corresponded to approximately 1.7 embryonic lethal mutations per single mutagenized genome. The high rates of mutations achievable with ENU allow for rapid identification of large numbers of genes involved in a variety of aspects of zebrafish development.  相似文献   

2.
The mutagenic effectiveness of ethylnitrosurea (ENU) was assessed in treated spermatogonia of DBA/2 mice. In a total of 17,515 offspring examined following 160 mg ENU/kg body weight treatment of parental males, 26 forward specific-locus mutations, 2 reverse specific-locus mutations and 9 dominant cataract mutations were recovered. ENU increased the mutation rate to all 3 genetic endpoints. However, ENU was less effective in treated DBA/2 mice than in the standard experimental protocol employing treated hybrid (102 X C3H)F1 male mice. This observed difference for a direct-acting mutagen such as ENU may result from differences in the detoxification of ENU or from differences in the DNA-repair capabilities of strain DBA/2. The first documented reverse mutation of the b allele is reported. The reversion was shown to be due to an AT to GC transition. To date, in addition to the reverse mutation of the b allele, 5 independent ENU-induced mutations recovered in germ cells of the mouse have been molecularly characterized and all have been shown to be base substitutions at an AT site. This is in contrast to the expected mechanism of ENU mutation induction due to O6-ethylguanine adduct formation which results in a GC to AT base-pair substitution and emphasizes the complexities of mutagenesis in germ cells of mammals.  相似文献   

3.
Mutagenic, reproductive, and toxicity effects of two closely related chemicals, ethylnitrosourea (ENU) and methylnitrosourea (MNU), were compared at equimolar and near-equimolar doses in the mouse specific-locus test in a screen of all stages of spermatogenesis and spermiogenesis. In stem-cell spermatogonia (SG), ENU is more than an order of magnitude more mutagenic than MNU. During post-SG stages, both chemicals exhibit high peaks in mutation yield when differentiating spermatogonia (DG) and preleptotene spermatocytes are exposed. The mutation frequency induced by 75mgMNU/kg during this peak interval is, to date, the highest induced by any single-exposure mutagenic treatment - chemical or radiation - that allows survival of the exposed animal and its germ cells, producing an estimated 10 new mutations per genome. There is thus a vast difference between stem cell and differentiating spermatogonia in their sensitivity to MNU, but little difference between these stages in their sensitivity to ENU. During stages following meiotic metaphase, the highest mutation yield is obtained from exposed spermatids, but for both chemicals, that yield is less than one-quarter that obtained from the peak interval. Large-lesion (LL) mutations were induced only in spermatids. Although only a few of the remaining mutations were analyzed molecularly, there is considerable evidence from recent molecular characterizations of the marker genes and their flanking chromosomal regions that most, if not all, mutations induced during the peak-sensitive period did not involve lesions outside the marked loci. Both ENU and MNU treatments of post-SG stages yielded significant numbers of mutants that were recovered as mosaics, with the proportion being higher for ENU than for MNU. Comparing the chemicals for the endpoints studied and additional ones (e.g., chromosome aberrations, toxicity to germ cells and to animals, teratogenicity) revealed that while MNU is generally more effective, the opposite is true when the target cells are SG.  相似文献   

4.
The multiple endpoint mammalian mutagenesis approach developed in our institute screens in the same animal for recessive specific-locus alleles at 7 loci, approximately 30 loci coding for dominant-cataract mutations, 23 loci controlling protein-charge changes and 12 loci for enzyme-activity alterations. Experiments to screen for the approximately 70 loci in the same offspring of treated male mice were performed with ethylnitrosourea (ENU), procarbazine and X-ray exposure. Mutations were recovered for each genetic endpoint in all treatment groups where a sufficient number of offspring was scored. ENU treatment is highly effective in inducing mutations to all genetic endpoints. The mutations were confirmed by breeding tests. The mutation rates to specific-locus and enzyme-activity alleles were both higher than the mutation rates to either dominant-cataract or protein-charge alleles. The advantages and possibilities of the multiple endpoint approach are discussed in detail.  相似文献   

5.
The mouse electrophoretic specific-locus test for induced germ-cell mutations, was used to determine the response of spermatogonial stem cells to a series of doses of the germ cell mutagen N-ethyl-N-nitrosourea (ENU). Male DBA/2J and C57B1/6J mice were treated with doses of 50, 100, 200 or 250 mg/kg ENU and their progeny screened for electrophoretically-detectable mutations at 32 separate loci. As expected, increasing doses of ENU led to increasing mutant frequencies. The differences in mutant frequencies between treated DBA/2J and C57B1/6J males were not statistically significant.  相似文献   

6.
A specific-locus test was carried out to examine the mutagenic activity of N-ethyl-N-nitrosourea (ENU) on mouse primordial germ cells (PGC). Embryos of C3H/He mice were treated transplacentally with 30 or 50 mg ENU per kg of maternal body weight on day 8.5, 10.5, or 13.5 of gestation (G8.5 day, G10.5 day, or G13.5 day). Male and female mice that had been treated with ENU in embryonic stages were mated with female or male tester PW mice to detect recessive mutations induced in PGC.

ENU induced recessive mutations at a relatively high rate in PGC at these developmental stages. The most sensitive stage was G10.5 day. On G8.5 day, the induced mutation rate in males and females was not significantly different. Cluster mutations, which originate from the limited number of PGC and cell killing, were more frequently induced at an earlier developmental stage. The induced mutation rate per unit dose of ENU (1 mg/kg) was higher in G8.5 and G10.5 day PGC than in stem-cell spermatogonia. It can be concluded that mouse PGC are more sensitive than stem-cell spermatogonia to the induction of recessive mutations by ENU.  相似文献   


7.
The relative induction of dominant-lethal mutations and heritable translocations in triethylenemelamine-treated male postmeiotic germ cells of mice was determined depending on the stage treated. Males were mated either 11.5–14.5 days after treatment (middle spermatids) or less than 2.5 hours after treatment (fully mature sperm). Results clearly showed that, even though similar levels of dominant-lethal mutations were induced in fully mature sperm and in middle spermatids, the frequency of heritable translocations induced in mature sperm was markedly lower than that induced in middle spermatids. This observation was used, together with earlier ones, to suggest a mechanism by which dominant-lethal mutations and heritable translocations are produced following chemical treatment of male postmeiotic germ cels.  相似文献   

8.
T Nagao 《Mutation research》1988,202(1):25-33
Daily doses of ENU (25-100 mg/kg) were injected intraperitoneally into ICR strain male mice for 5 days. The males were mated to untreated virgin females of the same strain on days 1-16 and 64-80 after the last dose. Copulations during these periods involve, respectively, treated postmeiotic cells and spermatogonial stem cells. The uterine contents were examined on day 18 of pregnancy for evidence of dominant lethal effects. The fetuses were examined for external and skeletal abnormalities. ENU treatment of either postmeiotic cells or spermatogonial stem cells caused dose-dependent significant increases in the incidence of abnormal fetuses over the control level. The induction rate per live fetus per unit dose in mg/kg by treating spermatogonial stem cells was estimated to be 1.0 X 10(-4), which is 3-fold lower than the rate previously estimated for the same endpoint at the same germ cell stage with MNU. Cleft palate was the most frequent external abnormality in the ENU-treated and the control series. Malformed vertebrae was the most frequent skeletal abnormality in the treated series. Rib fusion was the only skeletal malformation seen in the control series. Dominant lethals were clearly induced when germ cells were treated as postmeiotic cells.  相似文献   

9.
Ethylene dibromide (1,2-dibromoethane; EDB) was tested for the induction of dominant lethal and electrophoretically-detectable specific-locus mutations in the germ cells of DBA/2J male mice. Males were treated with a single intraperitoneal injection of 100 mg/kg EDB and mated to two C57BL/6J females. In the dominant lethal assay, matings were carried out to measure the effect of EDB on meiotic and postmeiotic stages; germ cells representing spermatogonial stem cells were analyzed in the electrophoretic specific-locus test. Neither of these germ cell tests produced any evidence that EDB is a germ cell mutagen. It appears from these data and those reported in the literature that EDB, a genotoxic carcinogen that affects male fertility in some mammalian species, is not mutagenic in the germ cells of the male mouse.  相似文献   

10.
1-Methyl-1-nitrosourea (MNU) induced specific-locus mutations in mice in all spermatogenic stages except spermatozoa. After intraperitoneal injection of 70 mg/kg body weight of MNU a high yield of specific-locus mutations was observed in spermatids (21.8 × 10−5 mutations per locus per gamete). The highest mutational yield was induced in differentiating spermatogonia. In 1954 offspring we observed 5 specific-locus mutants (44.8 × 10 mutations per locus per gamete). In addition, 2 mosaics were recovered, which gave a combined mutation rate of 62.7 × 10−5. In As spermatogonia the mutation rate was 3.9 × 10−5. The same dose of 70 mg/kg of MNU induced dominant lethal mutations 5–48 days post treatment, mainly due to post-implantation loss in spermatids and spermatocytes. It is interesting to compare the induction pattern of mutations by MNU with methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethylnitrosourea (ENU). Based on the different spermatogenic response of the induction of specific-locus mutations we can characterize the 4 mutagens in the following way: EMS = MMS ≠ MNU ≠ ENU.  相似文献   

11.
Alkylation-induced germ cell mutagenesis in the mouse versus Drosophila is compared based on data from forward mutation assays (specific-locus tests in the mouse and in Drosophila and multiple-locus assays in the latter species) but not including assays for structural chromosome aberrations. To facilitate comparisons between mouse and Drosophila, forward mutation test results have been grouped into three categories. Representatives of the first category are MMS (methyl methanesulfonate) and EO (ethylene oxide), alkylating agents with a high s value which predominantly react with ring nitrogens in DNA. ENU (N-ethyl-N-nitrosourea), MNU (N-methyl-N-nitrosourea), PRC (procarbazine), DEN (N-nitrosodiethylamine), and DMN (N-nitrosodimethylamine) belong to the second category. These agents have in common a considerable ability for modification at oxygens in DNA. Cross-linking agents (melphalan, chlorambucil, hexamethylphosphoramide) from the third category.The most unexpected, but encouraging outcome of this study is the identification of common features for three vastly different experimental indicators of genotoxicity: hereditary damage in Drosophila males, genetic damage in male mice, and tumors (TD50 estimates) in rodents. Based on the above three category classification scheme the following tentative conclusions are drawn. Monofunctional agents belonging to category 1, typified by MMS and EO, display genotoxic effects in male germ cell stages that have passed meiotic division. This phenomenon seems to be the consequence of a repair deficiency during spermiogenesis for a period of 3–4 days in Drosophila and 14 days in the mouse. We suggest that the reason for the high resistance of premeiotic stages, and the generally high TD50 estimates observed for this class in rodents, is the efficient error-free repair of N-alkylation damage. If we accept this hypothesis, then the increased carcinogenic potential in rodents, seen when comparing category 2 (ENU-type mutagens) to category 1 (MMS-type mutagens), along with the ability of category 2 genotoxins to induce genetic damage in premeiotic stages, must presumably be due to their enhanced ability for alkylations at oxygens in DNA; it is this property that actually distinguishes the two groups from each other. In contrast to category 1, examination of class 2 genotoxins (ENU and DEN) in premeiotic cells of Drosophila gave no indication for a significant role of germinal selection, and also removal by DNA repair was less dramatic compared to MMS. Thus category 2 mutagens are expected to display activity in a wide range of both post- and premeiotic germ cell stages. A number of these agents have been demonstrated to be among the most potent carcinogens in rodents. In terms of both hereditary damage and the initiation of cancers (low TD50), cross-linking agents (category 3) comprise a considerable genotoxic hazard. Doubling doses for the mouse SLT have been determined for four cross-linking agents not requiring metabolic conversion and in all four cases the doubling doses for these agents were lower than those for MMS, DES and EMS. In support of this conclusion, two of 10 genotoxic agents, for which data on chromosomal aberrations were available for both somatic cells and germ cells in mice, were cross-linking agents and again the doubling dose estimates are lower than for monofunctional agents. Four cross-linking agents induced mutations in stem cell spermatogonia indicating that this type of agent can be active in a wide range of germ cell stages.Quite in contrast to what is generally observed in unicellular systems and in mammalian cells in culture, both cross-linking agents and MMS-type mutagens (high s value) predominantly produce deletion mutations in postmeiotic male germ cell stages. This is the uniform picture found for both Drosophila and the mouse. It is concluded that in vitro systems, in contrast to Drosophila germ cells, fail to predict this very intriguing feature of mouse germ line mutagenesis. In addition to their potential for induction of deletions and other rearrangements, cross-linking agents are among the most efficient inducers of mitotic recombination in Drosophila. Thus there are several mechanisms by which cross-linking agents may cause loss of heterozygosity for long stretches of DNA sequences, leading to expression of recessive genes. Since a substantial portion of agents used in the chemotherapy of cancers have cross-linking potential, the potential hazards of hereditary damage and cancers associated with this class of genotoxins should, in our opinion, receive more attention than they have in the past.  相似文献   

12.
A total of 219 specific-locus, 35 dominant cataract and 44 enzyme-activity mutations induced in spermatogonia of mice by radiation or ethylnitrosourea (ENU) treatment were characterized for homozygous viability as well as fitness effects on heterozygous carriers. For all 3 genetic endpoints, the frequency of homozygous lethal mutations was higher in the group of radiation-induced mutations than in the ENU-treatment group. These observations are consistent with the hypothesis that radiation-induced mutations recovered in the mouse are mainly due to small deletions while ENU induces mainly intragenic mutations. The overall fitness of mutant heterozygotes was reduced for the group of radiation-induced specific-locus, dominant cataract and enzyme-activity mutations while the ENU-induced mutations exhibited no reduction in fitness. The fitness reduction of heterozygous carriers for a newly occurring mutation in a population is important in determining the persistence of the mutation in a population, and thus the total number of individuals affected before a mutation is eventually eliminated from the population. For the present results a maximal persistence of 12 generations and a minimal persistence of 3 generations is estimated. These results are consistent with the 6-7-generation persistence time assumed by UNSCEAR (1982) in an estimate of the overall effects of radiation-induced mutations in man.  相似文献   

13.
Recessive lethal mutations and mutations at the gol-1 locus were induced in the zebrafish by exposure of mature sperm to the alkylating agent ethyl nitrosourea (ENU). Embryonic lethal phenotypes were recognized among the parthenogenetic progeny of mutagenized animals or among the progeny of daughters of mutagenized animals. Novel specific locus mutations were identified by the failure of mutagenized chromosomes to complement pre-existing mutant alleles at the gol-1 locus. Each mutagenized individual harboured approximately 10 embryonic lethal mutations in its germ line and about 1 in 500 mutagenized animals harboured a new mutation at the gol-1 locus. Three lines of evidence indicate that the majority of mutations that were recovered following treatment of mature sperm with ENU were probably point mutations. First, the soma and germ lines of mutagenized animals were mosaic, as expected following simple alkylation of sperm DNA. Second, mutations induced by ENU at the gol-1 locus affected pigmentation but not viability, unlike the majority of mutations induced at this locus with gamma-irradiation. Third, the ratio of specific locus:recessive lethal mutations induced by ENU was approximately 50-fold lower than the ratio observed following mutagenesis with gamma-rays. Comparison of the incidence with which embryonic recessive lethal mutations were induced with the incidence with which specific locus mutations arose indicates that there are greater than 5000 genes essential to the development and viability of the zebrafish embryo.  相似文献   

14.
T Nomura  H Gotoh  T Namba 《Mutation research》1990,229(2):115-122
A functional defect (respiratory distress), in addition to morphological defects, was induced in the offspring of male ICR mice treated with ethylnitrosourea (ENU) before mating. ENU (100 and 50 micrograms/g) was injected intraperitoneally into adult male ICR mice that were then mated with untreated females. After the cesarian operation on the 18th day of gestation, fetuses were resuscitated. In the apneic fetuses showing respiratory distress, the lung was collapsed and the ductus arteriosus was not closed. The incidence of fetuses showing respiratory distress was significantly increased with the high dose (100 micrograms/g) of ENU, and it was higher after spermatogonial exposure than after postmeiotic exposure. There was no linearity in the dose-response relationship at the lower dose (50 micrograms/g), as was the case with the specific-locus mutation. The frequency per microgram ENU of fetuses showing respiratory distress was 3.7 X 10(-4) for spermatogonial treatment (calculated at a dose of 100 micrograms/g), the value being about 10-20 times higher than that of ordinary mutations in mice. About half of the fetuses showing respiratory distress often had specific anomalies (dwarfism and gigantic thymus), but the remainder showed no morphological changes. Spermatogonial treatment produced a zero or very low incidence of translocations in the meiotic configurations of primary spermatocytes. G-band analysis of the affected F1 fetuses also revealed no visible chromosomal abnormalities (there could be small deletions or inversions) except that trisomy 19 was found in a dwarf fetus.  相似文献   

15.
Using the specific-locus method, the ability of 1-ethyl-1-nitrosourea (ENU) and procarbazine hydrochloride (procarbazine) to induce gene mutations in mouse oocytes was tested and confirmed. The sensitive stage for the induction of mutations in oocytes with 160 mg/kg of ENU is 2-4 weeks post treatment. The induced mutation frequency in this mating interval was 5.1 X 10(-7) mutations/locus/gamete/mg/kg. The induction of mutations by procarbazine occurred 8-33 weeks after treatment. The induced mutation frequency in this mating interval for the 400 mg/kg group was 0.4 X 10(-7) mutations/locus/gamete/mg/kg. One third of the induced mutations was lethal in homozygous condition in both experiments. ENU and procarbazine have a lower mutational response in oocytes than in stem-cell spermatogonia.  相似文献   

16.
The chemotherapeutic agent busulfan was tested for the induction of dominant lethal and specific-locus mutations in male mice. A dose of 5 mg/kg b.w. of busulfan induces dominant lethal mutations in spermatozoa. A dose of 20 mg/kg b.w. induces dominant lethal mutations in spermatozoa and spermatids. A total of 83,196 offspring were scored in the specific-locus experiments. Busulfan-induced specific-locus mutations were recovered in spermatozoa and spermatids, but not in spermatogonia. The sensitivity patterns for the induction of dominant lethal and specific-locus mutations by busulfan in germ cells of male mice are similar but not identical.  相似文献   

17.
As part of an ongoing program of research using the testis of the dogfish shark (Squalus acanthias) to characterize morphologic and functional changes during spermatogenesis, we have developed procedures for culturing intact spermatocysts (germ cell/Sertoli cell clones) and isolated Sertoli cells from premeiotic, meiotic, and postmeiotic stages of development. Phase contrast and light microscopy confirmed the stage and cellular composition of spermatocysts and showed that they retained their closed, spherical configuration for at least 15 d in culture. Stage-related variations in [3H]thymidine incorporation (premeiotic much greater than meiotic = postmeiotic) were observed, a pattern that was the same quantitatively and qualitatively after one or seven days of culture. [3H]Leucine-labeled protein synthesis was twofold greater in cultures with premeiotic spermatocysts than in cultures with more mature stages, whether medium or cysts were analyzed. Sertoli cells isolated from spermatocysts of different stages differed in size, shape, cytological appearance, ability to form flattened monolayers, and rate of DNA synthesis. One day after seeding, [3H]thymidine labeling of Sertoli cells corresponded to the pattern obtained with intact spermatocysts (premeiotic much greater than meiotic = postmeiotic); however, 7 days in culture effected a 40- to 200-fold increase in this parameter and altered the stage-dependent pattern (premeiotic = meiotic greater than postmeiotic). Also, when [3H]leucine-labeled macromolecules secreted by Sertoli cells from premeiotic versus meiotic stages were analyzed by polyacrylamide gel electrophoresis (PAGE), banding patterns differed. Initial results demonstrate the feasibility and potential of this in vitro system for studying qualitative and quantitative changes during spermatogenesis.  相似文献   

18.
With the intention of assessing the general performance, sensitivity and the underlying mechanisms of somatic cell mutagenicity assays in Drosophila, a study was undertaken to compare the effectiveness of 5 procarcinogens and 4 direct-acting agents in the white/white-coral eye mosaic assay (SMART) with their activity in early (premeiotic) male and female germ-cell stages, after exposure of Drosophila larvae. The outcome indicated a lack of agreement in the results from recessive lethal assays (SLRL) in comparison with the somatic mutation and recombination test (SMART). The procarcinogens 2-naphthylamine (NA), 3-methylcholanthrene (MC), 9,10-dimethylanthracene (DA) and 7,12-dimethylbenz[a]anthracene (DMBA), and the direct-acting mutagens bleomycin (BM), methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), were quite efficient in producing somatic recombination and mutations in white/white-coral larvae, as opposed to only weak effects in early germ-cell stages. 2-Acetylaminofluorene (2AAF) showed marginal effects in both germ cells and somatic tissue after exposure of female larvae, but was inactive in testis. The discrepancy in mutational response between somatic cells and premeiotic germ cells is most impressive for MMS and BM. There is sufficient evidence for attributing a good sized proportion of the encountered variation to efficient error-free DNA repair of premutational damage and to segregational elimination during meiosis of deleterious mutations: (1) The efficient point mutagen ENU was the but one agent producing high levels of viable genetic alterations in early germ cells and in somatic cells. A similar behaviour was previously described for diethylnitrosamine, which ethylates DNA in the same fashion as ENU. (2) In early germ-cell stages of mei-9L1 male larvae, MMS induced multiple mutations (putative clusters) at a low dose differing by a factor 20-40 from those needed to produce an equivalent response in repair-competent strains. This is consistent with the concept of an active excision repair in premeiotic cells. (3) In the case of EMS, next to DNA repair, germinal selection seems to restrict the realization of EMS-induced genetic damage in premeiotic cells. (4) Bleomycin-induced chromosome aberrations caused high mortality rates in males (hemizygous for an X-chromosome) but not in females. MMS and BM, agents known to show preference for chromosome aberration induction, produced 3-6-fold higher rates of somatic mutational events (SME) in female genotypes as compared with the other sex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Two established chemical mutagens—ethylmethanesulphonate (EMS) and triethylenemelamine (TEM)—were tested for the ability to induce chromosome aberrations in mouse spermatogonia. While not a single aberration was detected following the EMS treatment, a low frequency of translocations and fragments was found in the TEM groups. These findings are in agreement with the data obtained with the specific locus mutation test as applied to male mouse premeiotic germ cells but contrast with the effectiveness of these chemicals in breaking chromosomes in male mouse postmeiotic germ cells. A differential sensitivity of post- and premeiotic germ cells to any kind of genetic damage by these chemical mutagens is most likely to be the correct interpretation of all the data. However, it is also suggested that a high proportion of translocations induced in spermatogonia by chemical mutagens may not be detectable by present methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号