首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoradiographic analysis of CHO cells labelled with [3H]TdR or [3H]BUdR shows that only [3H]BUdR label is removed from metaphase chromosomes after FPG staining. [3H]BUdR is differentially removed from the bifilary labelled chromatid (BB) compared with the unifilary labelled chromatid (TB). UV treatment alone removes the label and produces harlequin staining and if the UV step is omitted from the FPG staining technique no loss of label or harlequin staining occurs. The heat treatment step (60 °C in 2 × SSC) removes further label, reducing the ratio of grains BB/TB to 0.8:1.0 and improving the differential staining. Over-treatment with heat produces paler staining chromatids without altering this ratio. The differential loss of BUdR-substituted DNA through UV photolysis and extraction in solution appears to be the cause of the differential harlequin staining of chromatids in this technique.  相似文献   

2.
The direct staining of BrdU-substituted Chinese hamster chromosomes in a Na2HPO4-Giemsa solution without any pretreatments resulted in a B-dark type SCD in which bifilarly substituted (BB) chromatids stained dark and unifilarly substituted (TB) chromatids stained light. Detailed examinations of the staining process suggested that the Na2HPO4 solution acts to collapse chromosomes whereas the Giemsa dye works to reconstruct the collapsed chromosomes, and that during the reconstruction process preferential binding of the Giemsa dye to the BB-chromatids occurs to produce the B-dark SCD. It was revealed that not only the time but the temperature at which chromosome preparations are kept prior to use considerably affect the occurrence of SCD.  相似文献   

3.
BrdU-substituted Chinese hamster chromosomes were treated with a hot Na2HPO4 solution and stained with Giemsa to produce sister chromatid differential staining (SCD). The process of SCD was examined with the Nomarski differential interference microscope and the scanning electron microscope. After the Na2HPO4 treatment alone, unifilarly BrdU-substituted (TB) chromatids appeared somewhat more severely collapsed than the bifilarly substituted (BB) chromatids. Subsequent Giemsa staining, however, brought about pronounced piling up of the Giemsa dye on the TB-chromatids but not on the BB-ones, causing highly distinct differential Giemsa staining as well as a marked differentiation in surface topography between the sister chromatids. Removal of the Giemsa dye from the differentially Giemsa stained chromosomes resulted in a disappearance of such a pronounced topographic differentiation.  相似文献   

4.
Summary When fixed metaphase preparations of lymphocytes cultured in the presence of BrdU during two cell cycles are subjected to a 1-min simple irradiation treatment with near-ultraviolet light (radiation dose 3×105 J/m2), subsequent Giemsa staining produces differential staining of sister chromatids irrespective of previous exposure to a photosensitizer. The effects of this procedure were analyzed by irradiating single metaphases under the microscope, thus allowing precise dosage of radiation: Metaphase were subsequently stained with Giemsa and then subjected to the Feulgen-Schiff procedure. Whereas in the presence of DAPI as a photosensitizer a differential breakdown of BrdU-containing DNA in the chromatids under the influence of irradiation appeared to be the cause of sister chromatid differentiation, alterations presumably in the higher oeder structure of chromatin, not accompanied by removal of DNA, induced sister chromatid differentiation without DAPI.  相似文献   

5.
Fixed human metaphase chromosomes, whose DNA had been substituted with 5-bromodeoxyuridine (BrdUrd) for two rounds of replication (TB/BB) or for one round in BrdUrd followed by another round in thymidine (TT/BT), were treated with ultraviolet light (UV), in the presence or in the absence of 33258 Hoechst, to produce sister chromatid differentiation (SCD). Giemsa staining was compared with staining with monoclonal antibodies to double-stranded or single-stranded DNA. We confirmed that UV acts by debrominating BrdUrd-stubstituted DNA but showed that debromination alone cannot explain all our findings. We postulated that UV-induced protein-protein cross-linking, occurring to a different extent in differently BrdUrd-substituted chromatids, may also be invoked in explaining our data. Lastly, the different behaviour of unifilarly substituted TB as opposed to BT chromatids in UV-treated chromosomes, allowed us to hypothesize that such chromatids may differ depending on whether or not newly synthesized DNA is formed on a BrdUrd-containing strand.  相似文献   

6.
Differential staining of sister chromatids with Giemsa after BrdU incorporation into DNA was performed in Allium cepa L. chromosomes. A treatment solution containing 10–7 M FdU, 10–4 M BrdU and 10–6 M Urd was found to ensure BrdU incorporation without affecting cell cycle duration. After several procedures before staining the slides with Giemsa had been tested, treatment with the fluorochrome compound 33258 Hoechst, exposure to UV light and heating at 55° C in 0.5×SSC, were found to be essential for good differentiation. The distribution of SCEs per chromosome agrees with the expected Poisson distribution. The mean value of SCEs per chromosome occurring when cells were exposed to the treatment solution for two consecutive rounds of replication (=5.5) was double the mean value observed when cells were exposed to the same treatment for only one round of replication (=2.8). SCEs were found to occur more frequently in those chromosome regions corresponding neither to C-bands nor to late replicating DNA-rich regions. Finally, the occurrence of SCEs involving less than the width of a chromatid is discussed.  相似文献   

7.
Human metaphase chromosomes, substituted with 5-bromodeoxyuridine (BrdUrd) for one, two or three rounds of replication, were briefly pretreated with ultraviolet light (UV), in the presence of 33258 Hoechst, and subsequently digested with either exonuclease III or S1 nuclease. Pretreatment alone was not sufficient to induce sister chromatid differential staining (SCD), but allowed subsequent digestion with exonuclease III or S1. Such enzymes were found to induce SCD with ethidium bromide, as unifilarly BrdUrd-substituted chromatids (TB) were more resistant than bifilarly substituted chromatids (BB). Other experiments with DNase I or the AluI and HaeIII restriction endonucleases showed that only HaeIII was capable of inducing SCD by attacking BB more than TB chromatids preincubated with UV in the presence of Hoechst. SCD with exonuclease III/S1 nuclease seems to be due to (1) UV-induced DNA debromination occurring twice in BB as opposed to TB chromatids, and (2) alteration of chromatin protein structure occurring to a different extent in differently BrdUrd-substituted chromatids. Our findings with endonucleases, on the contrary, may depend on the capacity of enzymatic cleavage to cancel the different protein alterations induced differentially by UV in TB as opposed to BB chromatids.  相似文献   

8.
Root tip chromosomes were uniformly labelled with 3H-thymidine and replicate squashes were made. One set was untreated, one incubated in Ba(OH)2 solution, and a further set treated sequentially in Ba(OH)2 and hot saline-citrate (2 × SSC) to reveal C-bands. All replicates were autoradiographed and comparative grain counts made. Differences in grain numbers per metaphase cell showed that Ba(OH)2 extracted 40% of label, and that a further 23% was lost in the subsequent SSC incubation. The distribution of grains was mapped along a sample of each of five individually-recognisable chromosomes at the three treatment stages. Within each chromosome, the number of grains per segment did not differ significantly from a random distribution. This was true for all five chromosomes at all three stages of treatment, whether or not the regions were C-banded. — We conclude that DNA extraction occurs progressively during C-banding in Lilium, but that C-bands are not dark because of their relatively high retention of DNA.  相似文献   

9.
Electron microscopy of unstained BrdU-substituted chromosomes treated with 1.0 M NaH2PO4 at high pH and high temperature has demonstrated that there is a structural basis for the light microscopic observation of differentially Giemsa-stained unifilarly and bifilarly BrdU-substituted chromatids and the appearance of chromosome dots. At progressively higher treatment temperatures, sequential structural changes occurred in the chromosomes. After treatment with NaH2PO4 at 70–80° C, unifilarly BrdU-substituted chromatids were much more electron opaque than bifilarly substituted chromatids, and the overall data suggest that this difference in electron opacity is a result of the preferential extraction of chromosomal DNA from the bifilarly BrdU-substituted chromatids. NaH2PO4 treatment of the BrdU-substituted chromosomes at 80–90° ° C resulted in the formation of highly electron opaque spots (dots) on one or both chromatids. Dots first appeared on the electron lucent bifilarly BrdU-substituted chromatid, indicating that the chromatin with the greatest substitution of BrdU in its DNA is most susceptible to dot formation. At a slightly higher temperature, dots also appeared on the unifilarly BrdU-substituted chromatid concomitant with a disappearance of the electron opacity characterizing this chromatid at the lower treatment temperature. The dots may be formed by an extreme reorganization of residual chromatin or by some kind of interaction or reaction between the chromatin and the salts in the incubation medium. G-band regions may serve as focal points for dot formation.  相似文献   

10.
Lateral asymmetry in human constitutive heterochromatin   总被引:7,自引:2,他引:7  
Human lymphocytes were grown for one replication cycle in BrdU, stained with 33258 Hoechst, exposed to UV light and subsequently treated with 2 x SSC and stained with Giemsa. This technique differentially stains the constitutive heterochromatin of chromosomes 1, 9, 15, 16, and the Y. In the heterochromatin of chromosome 9 both sister chromatids stained darkly and symmetrically but in the other four chromosomes the heterochromatin showed lateral asymmetry, one chromatid being darkly stained while its sister chromatid was as pale or paler than the rest of the chromosome. The lateral asymmetry is presumed to reflect an underlying asymmetry in distribution of thymine between the two strands of the DNA duplex in the satellite DNA component of the chromosomes. In some number 1 chromosomes compound lateral asymmetry was seen; darkly staining material was present on both sister chromatids although at any given point lateral asymmetry was maintained so that if one chromatid stained darkly the corresponding point on the sister chromatid was very pale. The pattern of compound lateral asymmetry varied among the number 1 chromosomes studied but was constant for any one homologue from one individual. This technique reveals a previously unsuspected type of polymorphism within the constitutive heterochromatin of man.  相似文献   

11.
The chromosomes of the mouse have been identified by specific banding patterns revealed by the Feulgen stain. Comparison of the patterns of the Feulgen-stained karyotype with those of acetic-saline-Giemsa stain and quinacrinemustard-fluorescence demonstrates a high order of similarity among the three, with the localization of Feulgen dense bands and regions closely paralleling that of Giemsa dark and fluorescence bright bands. Since the stained substrate of the Feulgen reaction is known to be DNA, it is suggested that all three banding methods reveal the distribution of DNA or of some moiety that closely follows DNA distribution in metaphase chromosomes. The preparative procedure of the Feulgen banding method consists of a 15 to 20 minute exposure to PO4 buffer at pH 10 and a prolonged (60–72 hrs) exposure to 12xSSC. Omission or curtailment of either step results in preparations with chromosome sets that are not karyotypable, although some stain differentiation is produced. HCl extraction prior to the preparative treatment blocks banding, but acid extraction following the preparative treatment, either that of the HCl hydrolysis of the Feulgen reaction of that of an almost fourfold extension of the standard hydrolysis time, does not obliterate bands already formed. By extrapolation from biochemical studies of chromatin, it is postulated that the localization of Feulgen dark and light stain, representing relative DNA densities, reflects the regional protein association of the DNA; the Feulgen dense regions may result from aggregation of a specific class of histones by the alkaline buffer with consequent condensation of the DNA bound to those histones; the Feulgen pale or negative regions may represent those in which non-aggregated proteins, histone and non-histone, have been solubilized in the saline incubation, rendering the DNA of those regions subject to diffusion or vulnerable to fragmentation in the Feulgen hydrolysis.  相似文献   

12.
Cytological and biochemical experiments were undertaken to elucidate the mechanisms responsible for the reciprocal Giemsa staining of BrdU-substituted and unsubstituted chromosome regions subjected to high or low pH NaH2PO4 treatments. These experiments included staining of chromosome preparations with ethidium bromide (EB), acridine orange (AO), or dansyl chloride, digestion of BrdU-substituted and unsubstituted chromatin with pancreatic DNase I, and SDS polyacrylamide gel electrophoresis of the proteins extracted from, and those remaining in isolated, fixed, air-dried nuclei subjected to either NaH2PO4 treatment. The collective evidence from this and previous work clearly indicates that, although the staining reactions following the different pH treatments are reciprocal, the mechanisms of induction of the staining effects are not. After the high pH treatment, BrdU-substituted and unsubstituted chromosome regions are palely and intensely stained with Giemsa, respectively. This treatment preferentially solubilizes BrdU-substituted DNA, probably as a result of the photolysis or high temperature hydrolysis of BrdU-DNA. Concomitantly, this treatment selectively denatures the BrdU-DNA. The reduction in the amount of DNA in the BrdU regions leads to a quantitative decrease in Giemsa-dye binding, resulting in pale staining relative to unsubstituted regions. The extraction of BrdU-substituted DNA does not appear to simultaneously extract much chromosomal protein. After the low pH treatment, BrdU-substituted and unsubstituted regions appear intensely and palely stained with Giemsa, respectively. BrdU substitution greatly increases the binding affinity of histone H1 to DNA, and the low pH treatment preferentially extracts the less tightly bound H1 of the unsubstituted chromatin. This extraction of H1 is presumably responsible for the preferential dispersion of unsubstituted DNA outside the boundaries of the chromosome onto the surrounding area of the slide. The unsubstituted chromosome regions subsequently stain relatively palely with Giemsa, because the DNA in these regions is more dispersed than that in the BrdU-substituted regions. The low pH treatment concomitantly denatures the unsubstituted DNA.  相似文献   

13.
Factors involved in differential giemsa-staining of sister chromatids   总被引:4,自引:0,他引:4  
Microspectrophotometric evaluation of differentially stained sister chromatids made it possible to analyse precisely the factors involved in the Giemsa methods. The concentration of Hoechst 33258, pH of the mounting medium, temperature during UV-exposure and the quality (wavelength) of UV-light influenced the differential staining. Exposure of blacklight of 10–5 M Hoechst 33528-stained BrdU-labeled chromosome specimens mounted in McIlvaine buffer (pH 8.0) at 50° C reproducibly allowed differential staining of sister chromatids within 15 min. On the other hand, Korenberg-Freedlender's method using no Hoechst 33258 was also UV-light-dependent. Thus, photolysis of BrdU-substituted DNA was considered the basic mechanism of the Giemsa methods where the photosensitive Hoechst 33258 played a role as a sensitizer.  相似文献   

14.
Chinese hamster ovary cells grown for two rounds of DNA replication in the presence of BrdUrd contain sister chromatids that fluoresce differentially when stained with Hoechst 33258. If such fluorescent treatments are followed by incubation in 2 X SSC or water at 62° C and staining in 3% Giemsa, the chromosomes now contain one dark (unifilarly substituted) chromatid and one light (bifilarly substituted) chromatid, i.e. are harlequinized. These preparations do not fade and can be studied without resorting to fluorescence microscopy. Sister chromatid exchanges (SCE's) are seen with great clarity and resolution; and all the chromosomes in a cell can be scored, which is contrary to the usual experience with autoradiography. It was found that a) the yield of SCE's is dependent upon the concentration of BrdUrd in which the cells are grown and that the maximum number of SCE's that can occur spontaneously is 0.15 per chromosome per division cycle, b) the yield of SCE's doubles if the cells are exposed to visible light that can cause the photolysis of BrdUrd-containing DNA, and c) chromosomes that appear isolabelled in autoradiographic preparations come from observable multiple exchanges and are not the result of the segregation of DNA from a binemic chromosome. Furthermore, the staining patterns obtained in endoreduplicated cells clearly confirm that the polynucleotide strands of the DNA segregate into sister chromatids as though the newly synthesized strands were laid on the outside of the replicating double helix.  相似文献   

15.
Chromosomes with active nucleolus organizer regions (NORs) were visualized in root tip metaphases ofPhaseolus coccineus using the silver staining technique. A mean number of 5.5 Ag-NORs per cell was observed in 54 cells from eight plants. In the endopolyploid nuclei of the suspensor the silver technique did not demonstrate the reported specificity for nucleolus organizer activity, because there was usually pale staining of nucleoli and preferential staining of heterochromatic regions in the polytene chromosomes including pericentromeric material, telomeres and NORs. The mean number of NORs per nucleolus as detected by this method was 5.8 (28 nucleoli analysed). Using a modified preparation technique, giant chromosomes stained pale, but nucleoli of suspensor cells displayed darkly silver staining internal domains, each of which originating from a nucleolus organizer.—Giemsa C-banding of endopolyploid suspensor nuclei revealed C-positive nucleolus organizers with darkly staining intranucleolar fibrils. The latter were frequently involved in inter-NOR associations. In 34 nucleoli analysed, the mean number of Giemsa C-positive NORs per nucleolus was 6.0.Dedicated to Professor Dr.Lothar Geitler on the occasion of his 80th birthday.  相似文献   

16.
A cytological technique based on heat denaturation of in situ chromosomal DNA followed by differential reassociation and staining with acridine orange was developed. Mouse nuclei and chromosomes in fixed cytological preparations show a red-orange fluorescence after thermal DNA denaturation (2–4 minutes at 100° C), and fluoresce green if denaturation is followed by a total DNA reassociation (two minutes or more at 65–66°C). — A reassociation time between a few and 60–90 seconds demonstrates the centromeric heterochromatin of chromosomes (which sometimes aggregate in the form of clusters) and the interphase chromocenters in green, the chromosomal arms fluorescing red-orange. Under the same conditions, the Y chromosome presents a pale green or yellow-green fluorescence along its chromatids, but its centromeric region fluoresces weakly. — The interpretation is suggested that the fast-reassociating chromosomal DNA (as detected by AO in centromeric heterochromatin and interphase chromocenters), represents repetitive DNA.  相似文献   

17.
The binding of methylene blue to DNA and chromatin treated in various ways was examined by equilibrium dialysis. The maximum r value (moles of bound dye/mole of nucleotide) was 1.0 for DNA, 0.6 for unfixed chromatin, and 0.83 for chromatin fixed in methanol-acetic acid. When fixed chromatin was treated with saline-citrate at 60° C for 3 hours, as used for G-banding chromosomes, the r value decreased from 0.83 to 0.55. When unfixed chromatin was treated as for R-banding the r values also dropped. Equilibrium dialysis indicated there was no disproportionate increase of dye binding as the concentration of DNA increased. — These results, and others, suggest that some of the Giemsa negative regions of G- and R-banded chromosomes are due to the denaturation of non-histone proteins so that they more effectively cover the DNA and prevent side binding of the thiazin dyes.  相似文献   

18.
In L. pardalinum, narrow bands of quinacrine fluorescence are distributed throughout the chromosomes. These vary in intensity from dull to bright, and their constant pattern allows all chromosomes to be recognized. Bright bands occur at some centromeres, and near all three nucleolar constrictions. In L. longiflorum, similar Q-bands occur along chromosomes, but they are less distinctive and their pattern does not closely match that of L. pardalinum. Also, L. longiflorum does not have bright regions at or near primary and secondary constrictions. Most Q-bands do not coincide with dark Giemsa C-bands, except for the bright nucleolar and centromeric regions in L. pardalinum. All C-banded heterochromatin stains identically after SSC pretreatment, dark with Giemsa and bright with quinacrine.— The many Q-bands of varying intensity, wide distribution and constant pattern, unrelated to C-bands, may be analogous to mammalian Q-bands. Such universality is expected if Q-bands area fundamental component of chromosome architecture.  相似文献   

19.
W. Schnedl 《Chromosoma》1972,38(3):319-328
Almost all the 30 chromosome pairs of cattle can be identified by their banding patterns made be visible by a Giemsa staining technique described previously. The banding pattern of the X chromosome shows striking similarities with the banding pattern of the human X chromosome. — The centromeric region of the acrocentric autosomes contains a highly condensed DNA. This DNA is removed by the Giemsa staining procedure as can be shown by interference microscopic studies. If the chromosomes are stained with quinacrine dihydrochloride these centromeric regions are only slightly fluorescent. — Autoradiographic studies with 3H-thymidine show that the DNA at the centromeric regions starts and finishes its replication later than in the other parts of the chromosomes.  相似文献   

20.
M. E. Drets  A. Novello 《Chromosoma》1980,78(3):371-376
A cytological procedure for in vitro chromosome delineation has been studied using human and mouse (Mus musculus) chromosomes. This method, consisting of slide incubation in KMnO4 at 0–5° C for 24 h followed by a short exposure to NaHSO3 (1–3 min) and Giemsa staining, induces extraction of chromatin from human and mouse interphase nuclei and chromosomes. Autoradiography after 3H-ThD incorporation in vitro and cytophotometry confirmed that DNA is removed. Well contour-delineated and non-distorted chromosomes are observed in both species allowing the identification of all human chromosome groups. Contour chromosome delineation and its relationship to chromosome organization is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号